COMPUTER ARCHITECTURE
& ORGANIZATION

(6CS4-04)

Unit-2
Programming The Basic Computer

-Dr.MonicaLamba

Contents

Introduction

Machine Language

Assembly Language

Assembler

Program loops

Programming Arithmetic and logic operations
Subroutines

I-O Programming.

Micro programmed Control: Control Memory
Address sequencing

Micro program Example, design of control Unit

Programming the Basic Computers

Programming the Basic Computer

Introduction
A total computer system includes both hardware and software.

Hardware consists of the physical components and all associated equipment.

Software refers to the programs that are written for the computer.

It is possible to be familiar with various aspects of computer software without being
concerned with details of how the computer hardware operates. It is also possible to|
design parts of the hardware without a knowledge of its software capabilities.

Engineers concerned with computer architecture should have a knowledge of both
hardware and software because the two branches influence each other.

Programming the Basic Computer

+ Writing a program for a computer consists of specifying, directly or indirectly, a
sequence of machine instructions,

+ Machine instructions inside the computer form a binary pattern which is difficult, if not
impossible, for people to work with and understand.

v ILis preferable to write programs with the more familiar symbols of the alphanumeric
character set, As a consequence, there is a need for translating user-oriented
symbolic programs into binary programs recognized by the hardware.

Program

Machine
Independent

Machine
Dependent

Instruction Set

In basic Computer we have 25 instructions

Out of which 7 are memory reference
instructions(MRI)

18 are register reference instruction and
input/output reference instructions.

These 18 instructions are called non- memory
reference instruction.

Hexadecimal Computer Instructions
Symbol code Description
AND . Oor 8 AND Mw AC —
ADD lor® Add Mo AC carry o E /
LDA 2or A Load AC from M , M R|
STA Jor B Store ACin M \
BUN torC Branch unconditionally to m N
BSA S50c D Save return address in m and branch to m + |
ISZ 6or E Increment M and skip if zero
CIA 7800 Clear AC
CLE 7100 Clear E
CMA 7200 Complement AC
CME 7100 E RR'
CIR 7080 Circulate right £and AC
CIL 7040 Circulate left £and AC
INC 7020 Increment AC
SPA 7010 Skip if AC Is positive
SNA 008 Skip if AC is negative
SZA 7004 if AC Is zevo
SZE 7002 Skip if Eis zero
HLY 7001 Halt
INF FR00 Input information and clear flag
ouT F400 Output information and clear flag
SKI F200 Skip If input flag is on |/O
SKO Flo0 Skip if output flag is on
1ON Foso Tarn interrupt on
1OF Fo40 Tarn interrupt off

Machine Language

« A program is a list of instructions or statements for directing the computer to perform a required data-
processing task.

« The computer can execute programs only when they are represented internally in binary form.
for Programs written in any other language must be translated to the binary representation of
instructions before they can be executed by the computer,

v Programs writlen for a computer may be in one of the following categones.
1. Binary code.
2. Octal or hexadecimal code,

3. Symbolic code.

4. High-level programming languages.

1. Binary code.

Machine Language

This is a sequence of instructions and operands in binary that list the exact representation of instructions as they
appear in computer memory.

Binary Program 10 Add Two Numbers

Location Instruction code

0 0010 0000 0000 0100
| 0001 0000 0000 010
10 0011 0000 0000 0110
1 01T 0000 0000 000
100 0000 0000 0101 0011
101 L e 1 ool
10 0000 0000 0000 0000

+ The first column gives the memory location (in binary) of each
instruction or operand. The second column lists the binary
content of these memory locations. (The Jocation is the
address of the memory word where the instruction is stored. It
15 important to differentiate it from the address part of the
instruction itself)

+ The program can be stored in the indicated portion of memory,

and then executed by the computer starting from address 0.
The hardware of the computer will execute these instructions
and perform the intended task. However, a person looking at
this program will have a difficult time understanding what is to
be achieved when this program is executed. Nevertheless, the
computer hardware recognizes only this type of instruction
code

1. Binary code.

This is a sequence of instructions and operands in binary that list the exact representation of instructions as they

appear in computer memory,

Machine Language

Binary Program to Add Two Numbers

Location Instruction code
0 0010 0000 0000 0100
| 001 0000 0000 010)
10 0011 0000 0000 0110
I OLEE 0000 0000 000
100 0000 0000 0101 001

10
110

I 1
0000 0000

1101001
0000 0000

2. Octal or hexadecimal code.
This is an equivalent transiation of the binary code to octal or hexadecimal representation

Binary Program to Add Two Numbers Hexadecimal Program to Add Two Numbers
Location Instruction code Location Instruction

0 0010 0000 0000 0100 000 2004

| 0001 0000 0000 0101 001 1005

10 0011 0000 0000 0110 (002 3000

11 0111 0000 0000 0001 003 7001

100 0000 0000 0101 0011 004 0053
101 111 1111 1110 1001 005 FFE9
110 0000 0000 0000 0000 006 0000

3. Symbolic code.

* The user employs symbols (letters, numerals, or special characters) for the operation part, the address
part, and other parts of the instruction code. (Assembly Language)

+ Each symbolic instruction can be translated into one binary coded instruction. This translation is done by

a special program called an assembier
Program with Symbolic Operation Codes
Binary Program to Add Two Numbers
Location Instruction code Location Instruction Comments
0 0010 0000 0000 0100 (N0 LDA 004 Load first operand into AC
| 0001 0000 0000 0101 001 ADD 005 Add second operand o AC
10 0011 0000 0000 0110 02 STA 006 Store sum in location 006
1 O 0000 0000 0001 004 HLT Halt computer
100 0000 0000 0101 0011 (04 0053 First operand
101 L 1 Lo 1001 005 FFEY Second operand (negative)
110 0000 0000 0000 0000 006G 0000 Store sum here

4. High-level programming languages. These are special languages developed to reflect the procedures used
in the solution of a problem rather than be concerned with the computer hardware behavior.

» The program is written in a sequence of statementsin a form that people prefer to think
in when solving a problem.

» Each statement must be translated into a sequence of binary instructions before the program can be

executed in a computer. The program that translates a high-level language program to binary is called a
compiler,

Fortran Program to Add Two Numbers

INTEGERA. B C
DATA A, 83 B -23
C=A+8

END

Program with Symbolic Operation Codes

Location Instruction Comments
00 LDA 004 Load first operand into AC
LY ADD 005 Add second np('!.md o AC
002 STA 06 Store sum in location 006
003 HLT Halt computer
004 0053 First operand
005 FFEQ Second operand (negative)
NG OO0 Store sum here

Assembly Language Program to Add Two Numbers

We can go one step further and replace
each hexadecimal address by a symbolic
address and each hexadecimal operand
by a decimal operand.

This is convenient because one usually
does not know exactly the numerc
memory location of operands while writing
a program.

ORG 0 /Origin of program is location 0
LDA A /Load operand from location 4
ADD B /Add operand from location B
STAC /Store sum in location €

HLT /Halt computer

A, DEC 83 /Decimal operand

B, DEC =23 /Decimal operand

C, DEC 0 /Sum stored in location C
END /End of symbolic program

Assembly Language Program to Add Two Numbers

ORG 0 /Origin of program is location 0
AA /Load operand from location 4

ADD B /Add operand from location B
STA C /Store sum in location C
HLT /Halt computer

A, DEC 83 /Decimal operand

B, DEC -23 /Decimal operand

C, DEC 0 /Sum stored in location €
END /End of symbolic program

Rules of the Language

+ Each line of an assembly language program is arranged in three columns called fields. The fields specify
the following information,

1. The /abel field may be empty or it may specify a symbolic address.
2. The instruction field specifies a machine instruction or a pseudoinstruction.
3. The comment field may be empty or it may include a comment.

| (/‘L)Q\ S{)b Co w\ﬁ\(.k
A /-
ADD
"f‘jw‘\o-l't STA

I LMD

pseudoinstruction

« A pseudoinstruction is not a machine instruction but rather an instruction to the assembler giving information about
some phase of the translation,

Symbol Information for the Assembler

ORG N Hexadecimal number N is the memory location for the instruction or
operand listed in the following line

END Denotes the end of symbolic program

DECN Signed decimal number N to be converted to binary

HEX N Hexadecimal number N to be converted to binary

+ The ORG (origin) pseudoinstruction informs the assembler that the instruction or operand in the following line is to
be placed in a memory location specified by the number next to ORG.

+ The END symbol is placed at the end of the program to inform the assembier that the program is terminated.

« The other two pseudoinstructions specify the radix of the operand and tell the assembler how to convert the
listed number 1o a binary number.

Example

Assembly Language Program to Subtract Two Numbers

ORG 100 /Origin of program is location 100
DA SUB /Load subtrahend (o AC
CMA /Complement AC
INC /Increment AC
ADDMIN /Add minuend to AC
STA DIF /Swre difference
HIT /Halt computer
MIN, DECS83 /Minuend
SUB, DEC ~23 /Subtrahend
DIF, HEX 0

6-7 Subroutines

Frequently, the same piece of code must be written overagainin many different
parts of a program. Instead of repeating the code every time it is needed, there
is an obvious advantage if the common instructions are written only once. A
set of common instructions that can be used in a program many times is called
a subroutine. Each time that a subroutine is used in the main part of the
program, a branch is executed to the beginning of the subroutine. After the
subroutine has been executed, a branch is made back to the main program.

A subroutine consists of a self-contained sequence of instructions that
carries out a given task. A branch can be made to the subroutine from any part
of the main program. This poses the problem of how the subroutine knows
which location to return to, since many different locations in the main program
may make branches to the same subroutine. It is therefore necessary to store
the return address somewhere in the computer for the subroutine to know
where to return. Because branching to a subroutine and returning to the main
program is such a common operation, all computers provide special instruc-
tions to facilitate subroutine entry and return.

In the basic computer, the link between the main program and a sub-
routine is the BSA instruction (branch and save return address). To explain how
this instruction is used, let us write a subroutine that shifts the content of the
accumulator four times to the left. Shifting a word four times is a useful
operation for processing binary-coded decimal numbers or alphanumeric char-
acters. Such an operation could have been included as a machine instruction
in the computer. Since it is not included, a subroutine is formed to accomplish
this task. The program of Table 6-16 starts by loading the value of X into the

TABLE 6-16 Program to Demonstrate the Use of Subroutines

Location
ORG 100 /Main program
100 LDA X /Load X
101 BSA SH4 /Branch to subroutine
102 STA X /Store shifted number
103 LDAY /Load Y
104 BSA SH4 /Branch to subroutine again
105 STAY /Store shifted number
106 HLT
107 X, HEX 1234
108 Y. HEX 4321
/Subroutine to shift left 4 times
109 SH4, HEX 0 /Store return address here
10A CIL /Circulate left once
10B CIL
10C CIL
10D CIL /Circulate left fourth time
10E AND MSK /Set AC(13-16) to zero
10F BUN SH41 /Return to main program
110 MSK, HEX FFFR0 /Mask operand

END

AC. The next instruction encountered is BSA SH4. The BSA instruction is in
location 101. Subroutine SH4 must return to location 102 after it finishes its
task. When the BSA instruction is executed, the control unit stores the return
address 102 into the location defined by the symbolic address SH4 (which is
109). It also transfers the value of SH4 + 1 into the program counter. After this
instruction is executed, memory location 109 contains the binary equivalent of
hexadecimal 102 and the program counter contains the binary equivalent of
hexadecimal 10A. This action has saved the return address and the subroutine
is now executed starting from location 10A (since this is the content of PC in
the next fetch cycle).

The computation in the subroutine circulates the content of AC four times
to the left. In order to accomplish a logical shift operation, the four low-order
bits must be set to zero. This is done by masking FFF0 with the content of AC.
A mask operation is a logic AND operation that clears the bits of the AC where
the mask operand is zero and leaves the bits of the AC unchanged where the
mask operand bits are 1’s.

The last instruction in the subroutine returns the computer to the main
program. This is accomplished by the indirect branch instruction with an
address symbol identical to the symbol used for the subroutine name. The
address to which the computer branches is not SH4 but the value found in

location SH4 because this is an indirect address instruction. What is found in
location SH4 is the return address 102 which was previously stored there by
the BSA instruction. The computer returns to execute the instruction in loca-
tion 102. The main program continues by storing the shifted number into
location X. A new number is then loaded into the AC from location Y, and
another branch is made to the subroutine. This time location SH4 will contain
the return address 105 since this is now the location of the next instruction after
BSA. The new operand is shifted and the subroutine returns to the main
program at location 105.

From this example we see that the first memory location of each sub-
routine serves as a link between the main program and the subroutine. The
procedure for branching to a subroutine and returning to the main program
is referred to as a subroutine linkage. The BSA instruction performs an opera-
tion commonly called subroutine call. The last instruction of the subroutine
performs an operation commonly called subroutine return.

The procedure used in the basic computer for subroutine linkage is
commonly found in computers with only one processor register. Many com-
puters have multiple processor registers and some of them are assigned the
name index registers. In such computers, an index register is usually employed
to implement the subroutine linkage. A branch-to-subroutine instruction
stores the return address in an index register. A return-from-subroutine in-
struction is effected by branching to the address presently stored in the index
register.

Subroutine Parameters and Data Linkage

When asubroutineis called, the main program must transfer the data it wishes
the subroutine to work with. In the previous example, the data were trans-
ferred through the accumulator. The operand was loaded into the AC prior to
the branch. The subroutine shifted the number and left it there to be accepted
by the main program. In general, it is necessary for the subroutine to have
access to data from the calling program and to return results to that program.
The accumulator can be used for a single input parameter and a single output
parameter. In computers with multiple processor registers, more parameters
can be transferred this way. Another way to transfer data to a subroutine is
through the memory. Data are often placed in memory locations following the
call. They can also be placed in a block of storage. The first address of the block
is then placed in thememorylocation following the call. In any case, the return
address always gives the link information for transferring data between the
main program and the subroutine.

As an illustration, consider a subroutine that performs the logic OR
operation. Two operands must be transferred to the subroutine and the sub-
routine must return the result of the operation. The accumulator can be used

totransfer one operand and to receive the result. The other operandisinserted
in the location following the BSA instruction. This is demonstrated in the
program of Table 6-17. The first operand in location X is loaded into the AC.
The second operand is stored in location 202 following the BSA instruction.
After the branch, the first location in the subroutine holds the number 202.
Note that in this case, 202 is not the return address but the address of the
second operand. The subroutine starts performing the OR operation by com-
plementing the first operand in the AC and storing it in a temporary location
TMP. The second operand is loaded into the AC by an indirect instruction at
location OR. Remember that location OR contains the number 202. When the
instructionrefers to it indirectly, the operand at location 202 is loaded into the
AC. This operand is complemented and then ANDed with the operand stored
in TMP. Complementing the result forms the OR operation.

The return from the subroutine must be manipulated so that the main
programcontinues fromlocation 203 where the nextinstructionis located. This
is accomplished by incrementing location OR with the ISZ instruction. Now
location OR holds the number 203 and an indirect BUN instruction causes a
return to the proper place.

It is possible to have more than one operand following the BSA instruc-

TABLE 6-17 Program to Demonstrate Parameter Linkage

Location

ORG 200
200 LDA X /Load first operand into AC
201 BSA OR /Branch to subroutine OR
202 HEX 3AF6 /Second operand stored here
203 STAY /Subroutine returns here
204 HLT
205 X, HEX 7B95 /First operand stored here
206 Y, HEX 0 /Result stored here
207 OR, HEX 0 /Subroutine OR
208 CMA /Complement first operand
209 STA TMP /Store in temporary location
20A LDA ORI /Load second operand
20B CMA /Complement second operand
20C AND TMP /AND complemented first operand
20D CMA /Complement again to get OR
20E ISZ OR /Increment return address
20F BUN ORI /Return to main program
210 T™MP, HEXO0 /Temporary storage

END

tion. The subroutine must increment the return address stored in its first
location for each operand that it extracts from the calling program. Moreover,
the calling program can reserve one or more locations for the subroutine to
return results that are computed. The first location in the subroutine must be
incremented for these locations as well, before the return. If there is a large
amount of data to be transferred, the data can be placed in a block of storage
and the address of the first item in the block is then used as the linking
parameter.

A subroutine that moves ablock of data starting at address 100 into a block
starting with address 200 is listed in Table 6-18. The length of the block is 16
words. The first introduction is a branch to subroutine MVE. The first part of
the subroutine transfers the three parameters 100, 200 and —16 from the main
program and places them in its own storage location. The items are retrieved
from their blocks by the use of two pointers. The counter ensures that only 16
items are moved. When the subroutine completes its operation, the data

required is in the block starting from the location 200. The return to the main
program is to the HLT instruction.

TABLE 6-18 Subroutine to Move a Block of Data

LOP,

PT1,

PT2,
CTR,

BSA MVE
HEX 100
HEX 200
DEC -16
HLT

HEX 0
LDA MVE 1
STA PT1
ISZ MVE
LDA MVE 1
STA PT2
ISZ MVE
LDA MVE 1
STA CTR
ISZ MVE
LDA PT11
STAPT21
ISZ PT1

ISZ PT2
ISZ CTR
BUN LOP
BUN MVE I

/Main program
/Branch to subroutine
/First address of source data

/First address of destination data

/Number of items to move

/Subroutine MVE

/Bring address of source
/Store in first pointer
/Increment return address
/Bring address of destination
/Store in second pointer
/Increment return address
/Bring number of items
/Store in counter

/Increment return address
/Load source item

/Store in destination
/Increment source pointer
/Increment destination pointer
/Increment counter

/Repeat 16 times

/Return to main program

6-8 Input—Output Programming

Users of the computer write programs with symbols that are defined by the
programming language employed. The symbols are strings of characters and
each character is assigned an 8-bit code so that it can be stored in computer
memory. A binary-coded character enters the computer when an INP (input)
instruction is executed. A binary-coded character is transferred to the output
device when an OUT (output) instruction is executed. The output device
detects the binary code and types the corresponding character.

Table 6-19(a) lists the instructions needed to input a character and store
it in memory. The SKI instruction checks the input flag to see if a character is
available for transfer. The next instruction is skipped if the input flag bit is 1.
The INP instruction transfers the binary-coded character into AC(0-7). The
character is then printed by means of the OUT instruction. A terminal unit that
communicates directly with a computer does not print the character when a
key is depressed. To type it, it is necessary to send an OUT instruction for the
printer. In this way, the user is ensured that the correct transfer has occurred.
If the SKI instruction finds the flag bit at 0, the next instruction in sequence
is executed. This instruction is a branch to return and check the flag bit again.
Because the input device is much slower than the computer, the two instruc-
tions in the loop will be executed many times before a character is transferred
into the accumulator.

Table 6-19(b) lists the instructions needed to print a character initially
stored in memory. The character is first loaded into the AC. The output flag
is then checked. If it is 0, the computer remains in a two-instruction loop
checking the flag bit. When the flag changes to 1, the character is transferred
from the accumulator to the printer.

TABLE 6-19 Programs to Input and Output One Character

(a) Input a character:

CIF, SKI /Check input flag
BUN CIF /Flag=0, branch to check again
INP /Flag=1, input character
OouT /Print character
STA CHR /Store character
HLT
CHR, — /Store character here

(b) Output one character:
LDA CHR /Load character into AC

COF, SKO /Check output flag
BUN COF /Flag=0, branch to check again
OuUT /Flag=1, output character
HLT

CHR, HEX 0057 /Character is “W"

Character Manipulation

A computer is not just a calculator but also a symbol manipulator. The binary-
coded characters that represent symbols can be manipulated by computer
instructions to achieve various data-processing tasks. One such task may be
to pack two characters in one word. This is convenient because each character
occupies 8 bits and a memory word contains 16 bits. The program in Table 6-20
lists a subroutine named IN2 that inputs two characters and packs them into
one 16-bit word. The packed word remains in the accumulator. Note that
subroutine SH4 (Table 6-16) is called twice to shift the accumulator left eight
times.

In the discussion of the assembler it was assumed that the symbolic
program is stored in a section of memory which is sometimes called a buffer.
The symbolic program being typed enters through the input device and is
stored in consecutive memory locations in the buffer. The program listed in
Table 6-21 can be used to input a symbolic program from the keyboard, pack
two characters in one word, and store them in the buffer. The first address of
the buffer is 500. The first double character is stored in location 500 and all
characters are stored in sequential locations. The program uses a pointer for
keeping track of the current empty location in the buffer. No counter is used
in the program, so characters will be read as long as they are available or until
the buffer reaches location O (after location FFFF). In a practical situation it may
be necessary to limit the size of the buffer and a counter may be used for this
purpose. Note that subroutine IN2 of Table 6-20 is called to input and pack the
two characters.

In discussing the second pass of the assembler in Sec. 64 it was men-
tioned that one of the most common operations of an assembler is table lookup.
This is an operation that searches a table to find out if it contains a given
symbol. The search may be done by comparing the given symbol with each of
the symbols stored in the table. The search terminates when a match occurs

TABLE 6-20 Subroutine to Input and Pack Two Characters

IN2,
FST,

SCD,

SKI

BUN FST
INP

OuT
BSA SH4
BSA SH4
SKI

BUN SCD
INP

OuUT
BUN IN2 I

/Subroutine entry

/Input first character

/Shift left four times
/Shift left four more times

/Input second character

/Return

— —

TABLE 6-21 Program to Store Input Characters in a Buffer

LDA ADS /Load first address of buffer
STA PTR /Initialize pointer

LOP, BSA IN2 /Go to subroutine IN2 (Table 6-20)
STAPTR1 /Store double character word in buffer
ISZ PTR /Increment pointer
BUN LOP /Branch to input more characters

HLT
ADS, HEXS500 [First address of buffer
PTR, HEX 0 /Location for pointer

or if none of the symbols match. When a match occurs, the assembler retrieves
the equivalent binary value. A program for comparing two words is listed in
Table 6-22. The comparison is accomplished by forming the 2's complement of
aword (as if it were a number) and arithmetically adding it to the second word.
If the result is zero, the two words are equal and a match occurs. If the result
is not zero, the words are not the same. This program can serve as a subroutine
in a table-lookup program.

Program Interrupt

The running time of input and output programs is made up primarily of the
time spent by the computer in waiting for the external device to set its flag. The
waiting loop that checks the flag keeps the computer occupied with a task that
wastes a large amount of time. This waiting time can be eliminated if the
interrupt facility is used to notify the computer when a flag is set. The advan-
tage of using the interrupt is that the information transfer is initiated upon
request from the external device. In the meantime, the computer can be busy
performing other useful tasks. Obviously, if no other program resides in
memory, there is nothing for the computer to do, so it might as well check for

TABLE 6-22 Program to Compare Two Words

LDA WD1 /Load first word

CMA

INC /Form 2's complement
ADD WD2 /Add second word
SZA /Skip if AC is zero

BUN UEQ /Branch to “unequal” routine
BUN EQL /Branch to “equal” routine
wD1, —
WD2, —

the flags. The interrupt facility is useful in a multiprogram environment when
two or more programs reside in memory at the same time.

Only one program can be executed at any given time even though two
or more programs may reside in memory. The program currently being exe-
cuted is referred to as the running program. The other programs are usually
waiting for input or output data. The function of the interrupt facility is to take
care of the data transfer of one (or more) program while another program is
currently being executed. The running program must include an ION instruc-
tion to turn the interrupt on. If the interrupt facility is not used, the program
must include an IOF instruction to tumn it off. (The start switch of the computer
should also turn the interrupt off.)

The interrupt facility allows the running program to proceed until the
input or output device sets its ready flag. Whenever a flag is set to 1, the
computer completes the execution of the instruction in progress and then
acknowledges the interrupt. The result of this action is that the return address
is stored in location 0. The instruction in location 1 is then performed; this
initiates a service routine for the input or output transfer. The service routine
can be stored anywhere in memory provided a branch to the start of the routine
is stored in location 1. The service routine must have instructions to perform
the following tasks:

P

Save contents of processor registers.

. Check which flag is set.

. Service the device whose flag is set.

. Restore contents of processor registers.
. Turn the interrupt facility on.

. Return to the running program.

AU b WN

The contents of processor registers before the interrupt and after the
return to the running program must be the same; otherwise, the running
program may be in error. Since the service routine may use these registers, it
is necessary to save their contents at the beginning of the routine and restore
them at the end. The sequence by which the flags are checked dictates the
priority assigned to each device. Even though two or more flags may be set at
the same time, the devices nevertheless are serviced one at a time. The device
with higher priority is serviced first followed by the one with lower priority.

The occurrence of an interrupt disables the facility from further inter-
rupts. The service routine must turn the interrupt on before the return to the
running program. This will enable further interrupts while the computer is
executing the running program. Theinterrupt facility should not be tumed on
until after the return address is inserted into the program counter.

An example of a program that services an interrupt s listed in Table 6-23,

TABLE 6-23 Program to Service an Interrupt

|

Location
0 ZRO, —_ /Return address stored here
1 BUN SRV /Branch to service routine
100 CLA /Portion of running program
101 ION /Turn on interrupt facility
102 LDA X
103 ADD Y /Interrupt occurs here
104 STA Z /Program returns here after interrupt
- /Interrupt service routine
200 SRV, STA SAC /Store content of AC
CIR /Move E into AC(1)
STA SE /Store content of E
SKI /Check input flag
BUN NXT /Flag is off, check next flag
INP /Flag is on, input character
ouT /Print character
STA PT11 /Store it in input buffer
ISZ PT1 /Increment input pointer
NXT, SKO /Check output flag
BUN EXT /Flag is off, exit
LDA PT21 /Load character from output buffer
ouT /Output character
ISZ PT2 /Increment output pointer
EXT, LDA SE /Restore value of AC(1)
CIL /Shift it to E
LDA SAC /Restore content of AC
ION /Turn interrupt on
BUN ZRO 1 /Return to running program
SAC, — /AC is stored here
SE, — /E is stored here
PTL _ /Pointer of input buffer
P13, —_— /Pointer of output buffer

Chap. 7 Microprogrammed Control(control Unit)

0 7-1 Control Memory

€ Control Unit

0 Initiate sequences of microoperations
» Control signal (that specify microoperations) in a bus-organized system by the
groups of bits that select the paths in multiplexers, decoders, and arithmetic logic units
0 Two major types of Control Unit

» Hardwired Control :
0 The control logic is implemented with gates, F/Fs, decoders, and other digital circuits
0 + Fast operation, - Wiring change(if the design has to be modified) is difficult.

» Microprogrammed Control :

0 The control information is stored in a control memory, and the control memory is programmed
to initiate the required sequence of microoperations for an instruction

0 + Any required change can be done by updating the microprogram in control memory,
- Slow operation

€ Control Word

0 The control variables at any given time can be represented by a string of 1's and
O’s is called control world

® Microprogrammed Control Unit

0 A control unit whose binary control variables are stored in memory (control
memory).

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

7-2

€ Microinstruction : (Control Word in Control Memory)

0 The instruction store in control memory is called microinstruction (specifies one
or more microoperations)

¢ Microprogram
0 Microprogram is a sequence of microinstruction just like as program is a

sequence of program. It is two type as follow:

» Dynamic microprogramming : (Control Memory = RAM)

0 RAM can be used for writing (fo change a writable control memory)
0 Microprogram is loaded initially from an auxiliary memory such as a magnetic disk

» Static microprogramming : (Control Memory = ROM)
0 Control words in ROM are made permanent during the hardware production.

User Program

Machine Instruction

{

Microprogram

A - G

Microinstruction

J

Microoperation

Computer System Architecture chap. / mMicroprogrammed controil Dept. of Info. Of Computer

Micro programmed Control Organization o

® Microprogrammed control Organization :(Fig. 7-1)
[1) Control Memory

» Computer Memory employs a micro programmed control unit
which have two separate memory

0 Main Memory : for storing user program (Machine
instruction/data)

0 Control Memory : for storing microprogram
(Microinstruction)

[2) Control Address Register

» Specify the address of the microinstruction3) Sequencer (=
Next Address Generator)

» Determine the address sequence that is read from control
memory

» Next address of the next microinstruction can be specified

several way depending on the sequencer input : p. 217, [1, 2,
3, and 4]

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

Block Diagram of Microprogarmmed Control Memory "

0 4) Control Data Register (=(Pipeline Register))
» Hold the microinstruction read from control memory

» Allows the execution of the microoperations specified by the control word
simultaneously with the generation of the next microinstruction

¢ Example(RISC Architecture Concept)

0 RISC(Reduced Instruction Set Computer) system use hardwired control rather
than microprogrammed control

Figure 7-1 Microprogrammed control organization.

External Next -
input address Control Control Control Control
generator address memory data word
(sequencer) TREpiee (ROM) register

Next-address information

Computer System Architecture

Chap. 7 Microprogrammed Control

Dept. of Info. Of Computer

7-5

Address Sequencing

[7-2 Address Sequencing
® Address Sequencing = Sequencer : Next Address Generator
[Selection of address for control memory
¢ Routine =) Subroutine: program used by other ROUTINES

[Microinstruction are stored in control memory in groups With each group
specify a routine.

0 each computer instruction has it's own micro program routine in control
memory to generate microinstructions to execute an instruction.
¢ Mapping : mapping of
[Instruction Code into Address in control memorywhere routine
Is located is called mapping process
¢ Process of Address Sequencing :
[1) Incrementing of the control address register

[2) Unconditional branch or conditional branch, depending on status bit
conditions
0 3) Mapping process (bits of the instruction address for control memory)

[4) A facility for subroutine call and return

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

® Selection of address for control memory : Fig. 7-2

0 Multiplexer
@ CAR Increment
@ JMP/CALL
® Mapping

@ subroutine Return

0 CAR : Control Address Register
» CAR receive the address from
4 different paths
1) Incrementer
2) Branch address from
control memory
3) Mapping Logic
4) SBR : Subroutine Register
0 SBR : Subroutine Register

» Return Address can not be stored

in ROM

» Return Address for a subroutine is

stored in SBR

| lastruction code |

l

Branch
logle

MUK

12 lo e [@]

Branch address

select!

Multiplexers

I

Cloc) w—

Control address register
>]

(CAR)

Subroutine
reglser
(8BR)

I_I

Incremonter

Select a status

Controlmemory

Nicrooperations

Computer System Architecture

Chap. 7 Microprogrammed Control

Dept. of Info. Of Computer

¢ Conditional Branching
0 Status Bits
» Control the conditional branch decisions generated in the Branch Logic
0 Branch Logic

» Test the specified condition and Branch to the indicated address if the condition is
met ; otherwise, the control address register is just incremented.

® Mapnina of Instruction : Opcode
0 Computer Instruction 1011 Address
Mapping bits xxxx 0 O
Microinstruction Address 0101100

0 4 bit Opcode = specify up to 16 distinct instruction

0 Mapping Process : Converts the 4-bit Opcode to a 7-bit control memory address
» 1) Place a “0" in the most significant bit of the address
» 2) Transfer 4-bit Operation code bits
» 3) Clear the two least significant bits of the CAR (Microinstruction)

0 Mapping Function : Implemented by Mapping ROM or PLD

0 Control Memory Size : 128 words (= 2')

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

7-8

® Subroutine
[Subroutines are programs that are used by other routines

» Subroutine can be called from any point within the main body
of the microprogram

I Microinstructions can be saved by subroutines that use common
section of microcode

Memory Reference ,Operands Effective Address
Subroutine must have a provision for
» storing the return address during a subroutine call
» restoring the address during a subroutine return

0 Last-In First Out(LIFO) Register Stack

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

7-9

® |nstruction Format

0 Instruction Format :
» |:1 bit for indirect addressing
» Opcode : 4 bit operation code
» Address : 11 bit address for system memory

15 14 11 10 0

I Opcode Address

(a) Instruction format

€ Microinstruction Format :

The .microinstruction format for the control memory is shown in Fig. 7-6. The
%O bits of the microinstruction are divided into four functional parts. The three
fields F1, F2, and F3 specify microoperations for the computer. The CD field

selects status bit conditions. The BR field specifies the type of branch to be
used. The AD field contains a branch address. The address field is seven bits
wide, since the control memory has 128 = 2’ words.

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

Microinstruction formats -

3 3 3 2 2 T
Fl F2 F3 CD | BR AD

F1, F2, F3: Microoperation fields
CD: Condition for branching
BR: Branch field

AD: Address field

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

7-11

0 2 bit Condition Fields : CD
» 00 : Unconditional branch, U
» 01 : Indirect address bit, | = DR(15)
» 10 : Sign bit of AC, S = AC(15)
» 11 :Zerovaluein AC,Z=AC=0
0 2 bit Branch Fields : BR

» 00 : JMP
0 Condition=0: 1 CAR« CAR+1

0 Condition=1: 2 CAR« AD
» 01:CALL ’

0 Condiion=0: 1 CAReCAR+] -

0 Condition = 1: 2 CAR « ADISBR — CAR + !)
» 10 : RET 3 QR SBRY. == --
» 11 : MAP 4 CAR(2-5)« DR(11-14),CAR(0,1,6) < 0

0 7 bit Address Fields : AD
» 128 word : 128 X 20 bit

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

Micro-instruction Types 712

[Micro instruction are two type:
1)vertical micro-programming
2) horizontal micro-programming

@ vertical micro-programming

Each micro-instruction specifies single (or few)
micro-operations to be performed

® horizontal micro-programming

Each micro-instruction specifies many different
micro-operations to be performed in paralilel

12

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

Vertical Micro-programming 713

Width is narrow
n control signals encoded into log, n bits

Limited ability to express parallelism

Considerable encoding of control information requires external memory
word decoder to identify the exact control line being manipulated

1o O s [v [o |

F1 |[F2 |F3 Micro-instruction Address

Function Codes

Jump
Condition

Vertical Micro-programming diag

13

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

7-14

Horizontal Micro-programmed

Internal CPU Control Signals Micro-instruction Address

o

System Bus Jump Condition
Control Signals

Wide memory word
High degree of parallel operations possible
Little encoding of control information

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

GIUESTION -

The microprogrammed control organization shown in Fig. 7-1 has the fol-
lowing propagation delay times. 40 ns to generate the next address, 10 ns
to transfer the address into the control address register, 40 ns to access the
control memory ROM, 10 ns to transfer the microinstruction into the control
data register, and 40 ns to perform the required microoperations specified
by the control word. What is the maximum clock frequency that the control
can use? What would the clock frequency be if the control data register is
not used?

40 10 40 10 40
sequencer CAR ROM Data Micro-
. rcg}\stcr operj{\tn()ns
Clock 1 I'I J I‘I
Clock 2
50 ns 50 50 ns 50 50 ns
A - -
Clock 1
Clock 2 i =
1 1000
frequency of each clock = — = <10° =10MHz= .
100=<10 100

If the data register is removed, we can use a single phase

1

coClock with a frequency of e —ans 11.1MH-=. ter

7-16

1he system shown in Fig. 7-2 uses a control memory of 1024 words of 32 bits

each. The microinstruction has three fields as shown in the diagram. The
microoperations field has 16 bits.

a. How many bits are there in the branch address field and the select field?

b. If there are 16 status bits in the system, how many bits of the branch logic
are used to select a status bit?

¢. How many bits are left to select an input for the multiplexers?

Control memory = 2'° x 32
(a) 6 10 16
Select | Address Micro operations

32 bits

(b) 4 bits
(c) 2 bits

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

7-17

The control memory in Fig. 7-2 has 4096 words of 24 bits each.
a. How many bits are there in the control address register?

b. How many bits are there in each of the four inputs shown going into the
multiplexers?

¢. What are the number of inputs in each multiplexer and how many
multiplexers are needed?

Control memory = 2

(@) 12 bits

(b) 12 bits

(C) 12 multiplexers, each of size 4-to-1 line.

Computer System Architecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

Control Unit
O

» CU is the engine that runs the entire computer with
the help of the control signals.

» It perform the correct sequencing of the correct
signals.

» It controls everything with a few control signals that
points within processor and a few control signals to
the system bus.

Introduction

Instruction register

Control bus

Control signals
—- within CPU
Flags :>
— Control signals
Control from control bus
unit <
CloCK e
Control signals
to control bus

Figure Block Diagram of the Control Unit

Control Signal Sources

O

Control Signal Sources

O

Control Signal Outputs

O

» The control signals are generated by the help of the
hardware.

» It can be designed as the clock sequential circuit.

» It is implemented with logic gates, flip-flops,
decoders, multiplexers and other logic buildings
blocks.

» All controls that can be activated simultaneously are
grouped together to form the control words.

» These words are stored in the control memory.

» The control words are fetched from the control
memory and are routed to various functional units
to enable appropriate processing hardware.

Comparison

O

Attributes Hardwired Control Microprogramming
Control
Speed Fast Slow
Cost of More Cheaper
Implementation
Flexibility Difficult to modify Flexible
Ability to handle Difficult Easier
complex instruction
Decoding Complex Easy
Application RISC CISC
Instruction Set Size Small Large
Control Memory Absent Present

Micro programmed Control Unit

@

(]

®

Sequence login unit issues read command

Word specified in control address register is read into
control buffer register

Control buffer register contents generates control signals
and next address information

Sequence login loads new address into control buffer
register based on next address information from control
buffer register and ALU flags

N

F A

A ARy Wa Tatele n Vavalle 7 :
Next Address Decision

< 7
-

N\
\ \
)

» Depending on ALU flags and control buffer register
Get next instruction
Add 1 to control address register
Jump to new routine based on jump microinstruction

Load address field of control buffer register into control address
register

Jump to machine instruction routine
Load control address register based on opcode in IR

Control Memory Organization

O

Fetch

routine

Interrupt
cycle

routine

Execute cyvcle beginning

AND routine

ADD routine

} TOF routine

Organization of Control Memory

Functioning of Micro programmed
Control Unit

Q Instruction Register l

Control

Unit I Decoder I
ALU ‘ -
Flags S usanc Control Address Register]
Clock Logic l
Read
Control
Memory

l Control Buffer Register l

4

Decoder

Next Address Control

Control Signals Control Signals
WWithin CPU to System Bus

Selection of address for control memory

| Instruction code I
Mapping

v
Multiplexers I

Control address register register

=] |

Status

logic |select

Subroutine

X
Control memory (ROM)

select a status

Microoperations

Branch address

¢ Selection of address for control memory : Fig. 7-2

e Multiplexer
D CAR Increment
@ JMPICALL
¢y Mapping

@ Subroutine Return

e CAR : Control Address Register
» CAR receive the address from
4 different paths
1) Incrementer
2) Branch address from
control memory
3) Mapping Logic
4) SBR : Subroutine Register
e SBR : Subroutine Register

» Return Address can not be stored

in ROM

» Return Address for a subroutine is

stored in SBR

Control address register
(CAR)

Subroutine
regiser
(s8R)

Incrementer

Control memory

Salact a status

Branch addrass

Microoperations

Conditional Branching

'

Control address register

L

Increment

Control memory

Status bits
(condition)

l

Condition select Micro-operations

Next address

Conditional Branch

If Condition is true, then Branch (address from
the next address field of the current microinstruction)
else Fall Through
Conditions to Test: O(overflow), N(negative),
Z(zero), C(carry), etc.

Unconditional Branch
Fixing the value of one status bit at the input of the multiplexer to 1

Mapping of Instructions

Direct Mapping [
OP-codes of Instructions — gggg ﬁ:g 233222
ADD 0000 — -
AND 0001 — - 881(1) LDA Routme
LDA 0010 : 0100 [BUN Routine
STA 0011
BUN 0100 — g&':tafgé

Mappmg
Bits

Address
-~ 10[0000Jo10 | ADD Routine

-
¢ '. - -

5 Y .. - 10[0001Jo10 | AND Routine

~. .~ 10001010 [TDA Routine

. 10[00T7]010 [STA Routine

+ 10[0100]o10 | BUN Routine

Mapping of Instructions to Microroutines

Mapping from the OP-code of an instruction to the
address of the Microinstruction which is the starting
microinstruction of its execution microprogram

Machine OP-code
Instruction [1 01 1] Address |

Mapping bits 0 00

Microinstruction .
address |°1 01 100'

X X X X

Mapping function implemented by ROM or PLA

| OP-fode I

Mapping memory
(ROM or PLA)

!

|Contro| address registerl

!

| Control Memory |

Microprogram Example

1.Computer Configuration
*|nstruction Format
* Microinstruction Format
*Microoperation
* Conditional Field
*Branch Field
*Symbolic Microinstruction
* Fetch Routine
*Symbolic Microprogram
*Execution of program
*Binary Microprogram

Machine Instruction Format

Machine instruction format

15 14 11 10 0
| Opcode I Address I

Sample machine instructions

I_éymbol -code Description

ADD 0000 | AC « AC + M[EA]
BRANCH 0001 if (AC <0) then (PC « EA)
STORE 0010 M[EA] « AC
EXCHANGE| 0011 | AC « M[EA], M[EA] « AC

EA is the effective address

Microinstruction Format

3 3 3 2 7

—

F1 F2 F3 } CD | BR AD

F1, F2, F3: Microoperation fields
CD: Condition for branching
BR: Branch field

AD: Address field

F1 | Microoperation Symbol F2 | Microoperation Symbol
000 | None NOP 000 | None NOP
001 | ACAC+DR ADD 001 | AC«AC-DR SUB
010 | AC« 0 CLRAC 010 | AC«ACVYDR OR

011 | AC« AC+1 INCAC 011 | AC—ACADR AND
100 | AC« DR DRTAC 100 | DR « M[AR] READ
101 | AR« DR(0-10) DRTAR 101 | DR« AC ACTDR
110 | AR« PC PCTAR 110 | DR« DR +1 INCDR
111 | M[AR] « DR WRITE 111 | DR(0-10) « PC PCTDR

F3 Microoperation Symbol

000 | None NOP
001 | AC«~ AC®DR XOR
010 | AC « AC’ COM

011 | AC« shlAC SHL
100 | AC«shrAC SHR
101 | PC«PC+1 INCPC
110 | PC« AR ARTPC
111 | Reserved

Condition
Always =1
DR(15)
AC(15)
AC=0

Comments
Unconditional branch
Indirect address bit
Sign bit of AC
Zero value in AC

Fl._ll'lCtiOﬂ
CAR « AD if condition = 1

CAR « CAR + 1if condition=0

CAR « AD, SBR « CAR + 1 if condition= 1
CAR « CAR + 1 if condition=0

CAR « SBR (Return from subroutine)
CAR(2-5) « DR(11-14), CAR(0,1,6) « 0

SYMBOLIC MICROINSTRUCTIONS

« Symbols are used in microinstructions as in assembly la
* A symbolic microprogram can be translated into its binary
by a microprogram assembler.

Sample Format
five fields: label; micro-ops; CD; BR; AD

Label: may be empty or may specify a symbolic
address terminated with a colon

Micro-ops: consists of one, two, or three symbols
separated by commas

CD: one of {U, |, S, Z}, where U: Unconditional Branch
I: Indirect address bit
S: Sign of AC
Z: Zero value in AC

BR: one of {JMP, CALL, RET, MAP}
AD: one of {Symbolic address, NEXT, empty}

DESIGN OF
CONTROL UNIT

Micro-Operations

Program Execution

Instruction Cycle

Instruction Cycle

PR

Instruction Cycle

[Fetch I I lndlrectl I Executel [lnterruptl

(4OP| [4OP| [HOP|

1OP| [uOP

A

Figure 19.1 Constituent Elements of a Program Execution

Fetch Cycle

At the beginning of the fetch cycle, the address of the next instruction to be executed
is in the program counter (PC)

The first step is to move that address to the memory address register (MAR) because
this is the only register connected to the address lines of the system bus.

The second step is to bring in the instruction. The desired address (in the MAR) is
placed on the address bus, the control unit issues a READ command on the control
bus, and the result appears on the data bus and is copied into the memory buffer
register (MBR).

We need to increment the PC by the instruction length to get ready for the next
instruction.

The third step is to move the contents of the MBR to the instruction register (IR).

t1 : MAR « (PC) ...(Contents of PC)
t2 : MBR «— Memory

PC « (PC) + | ...(l is instruction length)
t3 : IR — (MBR)

Indirect Cycle

If the instruction specifies an indirect address, then an indirect cycle must precede the
execute cycle.

t1 : MAR « (IR(Address)) ... (Content of IR (which is an Indirect address))
t2 : MBR «— Memory
t3 : IR(Address) « (MBR(Address))

The address field of the instruction is transferred to the MAR. This is then used to
fetch the address of the operand.

Finally, the address field of the IR is updated from the MBR, so that it now contains a
direct rather than an indirect address.

Interrupt Cycle

At the completion of the execute cycle, a test is made to determine whether any
enabled interrupts have occurred. If so the interrupt cycle occurs.

t1 : MBR « (PC)

t2 . MAR « Save Address
PC <« Routine_Address

t3 : Memory «— (MBR)

Save the PC contents in memory and update PC with Routine Address

It may take one or more additional micro-operations to obtain the Save_Address and
the Routine_Address before they can be transferred

Execute Cycle

Because of the variety opcodes, there are a number of different sequences of micro-
operations that can occur.

The control unit examines the opcode and generates a sequence of micro-operations
based on the value of the opcode.

This is referred to as instruction decoding.

t1 : MAR < (IR(address))
t2 : MBR «— Memory
t3 : R1 < (R1) + (MBR)

Instruction Cycle

A 2-bit register called the instruction cycle code (ICC) designates the state of the
processor in terms of which portion of the cycle it is in:

00: Fetch

01: Indirect

10: Execute

11: Interrupt

At the end of each of the four cycles, the ICC is set appropriately.
The indirect cycle is always followed by the execute cycle.

The interrupt cycle is always followed by the fetch cycle.

For both the fetch and execute cycles, the next cycle depends on the state of the
system.

Wilkie’s Microprogrammed
CuU

from
Instruction
register ——-ﬁl‘
\ 4
Register 11
Clock)
Register [
A 4 AAA A A
- "
Control | Address .
signals decoder .
-
- " »
Yvyy Yy Conditional
’ signal
Control signais 2%

Figure 205 Wilkes's Microprogrammed Control Unit

During a machine cycle, one row of the matrix is activated with a pulse. This
generates signals at those points where a diode is present (indicated by a dot in the
diagram).

Each row of the matrix is one microinstruction, and the layout of the matrix is the
control memory.

At the beginning of the cycle, the address of the row to be pulsed is contained in
Register |.

The decoder, when activated by a clock pulse, activates one row of the matrix.

Depending on the control signals, either the opcode in the instruction register or the
second part of the pulsed row is passed into Register |l during the cycle.

® Register Il is then gated to Register | by a clock pulse.
® Alternating clock pulses are used to activate a row of the matrix and to transfer from
Register |l to Register |.

* The two-register arrangement is needed because the decoder is simply a
combinatorial circuit; with only one register, the output would become the input during
a cycle, causing an unstable condition.

