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Preface

This book deals with computer architecture as well as computer orgaaization
and design. Computerarchitecture is concerned with the structure and behav-
ior of the various functional modules of the computer and how they interact
to provide the processing needs of the user. Computer organization is con-
cerned with the way the hardware components are connected together to form
a computer system. Computer design is concerned with the development of
the hardware for the computer taking into consideration a given set of speafica-
tions.

The book provides the basic knowledge necessary to understand the
hardware operation of digital computers and covers the three subjects associ-
ated with computer hardware. Chapters 1 through 4 present the various digital
components used in the organization and design of digital! computers. Chap-
ters 5 through 7 show the detailed steps that a designer must go through in
order to design an elementary basic computer. Chapters8§ through 10 deal with
the organization and architecture of the central processing unit. Chapters 11
and 12 present the organization and architecture of input-outputand memory.
Chapter 13 introduces the concept of multiprocessing. The plan of the book is
to present the simpler material first and introduce the more advanced subjects
later. Thus, the first seven chapters cover matevi2) needed for the basic under-
standing of computer organization, design, and programming of a simple
digital computer. The last six chapters present the organization and architec-
ture of the separate functional uniw of the digital computer with an emphasis
on more advanced topics.

The material in the third edition is organized in the same manner as in the
second edition and many of the features remain the same. The third edition,
however, offers several improvements over the second edition. All chapters
except two {6 and 10) have been completely revised to bring the material up to
date and to clarify the presentation. Two new chapters were added: chapter 9
on pipeline and vector processing, and chapter 13 on multiprocessors. Two
sections deal with the reduced instruction set computer (RISC). Chapter 5 has
been revised completely to simplify and clarify the design of the basic com-
puter. New problems have been formulated for eleven of the thirteen chapters.

The physical organization of a particular computer including its registers,
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the data flow, the microoperations, and control functions can be described
symbolically by means of a hardware description language. In this book we
develop a simple register transfer language and use it to specify various com-
puter operations in a concise and precise manner. The relation of the register
transfer language to the hardware organization and design of digital computers
is fully explained.

The book does not assume prior knowledge of computer hardware and
the material can be understood without the need of prerequisites. However,
some experience in assembly language programming with a microcomputer
will make the material easier to understand. Chapters 1 through 3 can be
skipped if the reader is familiar with digital logic design.

The following is a brief description of the subjects that are covered in each
chapter with an emphasis on the revisions that were made in the third edition.

Chapter 1 introduces the fundamental knowledge needed for the design
of digital systems constructed with individual gates and flip-flops. It covers
Boolean algebra, combinational circuits, and sequential circuits. This provides
the necessary background for understanding the digital circuits to be
presented.

Chapter 2 explains in detail the logical operation of the most common
standard digital components. It includes decoders, multiplexers, registers,
counters, and memories. These digital components are used as building blocks
for the design of larger units in the chapters that follow.

Chapter 3 shows how the various data types found in digital computers
are represented in binary form in computer registers. Emphasis is on the
representation of numbers employed in arithmetic operations, and on the
binary coding of symbols used in data processing.

Chapter 4 introduces a register transfer language and shows how it is
used to express microoperations in symbolic form. Symbols are defined for
arithmetic, logic, and shift microoperations. A composite arithmeticlogic shift
unit is developed to show the hardware design of the most common micro-
operations.

Chapter 5 presents the organization and design of a basic digital com-
puter. Although the computer is simple compared to commercial computers, it
nevertheless encompasses enough functional capabilities to demonstrate the
power of a stored program general purpose device. Register transfer language
is used to describe the internal operation of the computer and to specify the
requirements for its design. The basic computer uses the same set of instruc-
tions as in the second edition but its hardware organization and design has
been completely revised. By going through the detailed steps of the design
presented in this chapter, the student will be able to understand the inner
workings of digital computers.

Chapter 6 utilizes the twenty five instructions of the basic computer to
illustrate techniques used in assembly language programming. Programming
examples are presented for a number of data processing tasks. The relationship
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between binary programs and symbolic code is explained by examples. The
basic operations of an assembler are presented to show the translation from
symbolic code to an equivalent binary program.

Chapter 7 introduces the concept of microprogramming. A specific micro-
programmed control unit is developed to show by example how to write
microcode for a typical set of instructions. The design of the control unit is
carried-out in detail including the hardware for the microprogram sequencer.

Chapter 8 deals with the central processing unit (CPU). An execution unit
with common buses and an arithmetic logic unit is developed to show the
general register organization of a typical CPU. The operation of a memory stack
is explained and some of its applications are demonstrated. Various instruction
formats are illustrated together with a variety of addressing modes. The most
common instructions found in computers are enumerated with an explanation
of their function. The last section introduces the reduced instruction set com-
puter (RISC) concept and discusses its characteristics and advantages.

Chapter 9 on pipeline and vector processing is a new chapter in the third
edition. (The material on arithmetic operations from the second edition has
been moved to Chapter 10.) The concept of pipelining is explained and the way
it can speed-up processing is illustrated with several examples. Both arithmetic
and instruction pipeline is considered. It is shown how RISC processors can
achieve single-cycle instruction execution by using an efficient instruction
pipeline together with the delayed load and delayed branch techniques. Vector
processing is introduced and examples are shown of floating-point operations
using pipeline procedures.

Chapter 10 presents arithmetic algorithms for addition, subtraction, mul-
tiplication, and division and shows the procedures for implementing them with
digital hardware. Procedures are developed for signed-magnitude and
signed-2’s complement fixed-point numbers, for floating-point binary
numbers, and for binary coded decimal (BCD) numbers. The algorithms are
presented by means of flowcharts that use the register transfer language to
specify the sequence of microoperations and control decisions required for their
implementation.

Chapter 11 discusses the techniques that computers use to communicate
with input and output devices. Interface units are presented to show the way
that the processor interacts with external peripherals. The procedure for
asynchronous transfer of either parallel or serial data is explained. Four modes
of transfer are discussed: programmed I/O, interrupt initiated transfer, direct
memory access, and the use of input-output processors. Specific examples
illustrate procedures for serial data transmission.

Chapter 12 introduces the concept of memory hierarchy, composed of
cache memory, main memory, and auxiliary memory such as magnetic disks.
The organization and operation of associative memories is explained in detail.
The concept of memory management is introduced through the presentation of
the hardware requirements for a cache memory and a virtual memory system.
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Chapter 13 presents the basic characteristics of mutiprocessors. Various
interconnection structures are presented. The need for interprocessor arbitra-
tion, communication, and synchronization is discussed. The cache coherence
problem is explained together with some possible solutions.

Every chapter includes a set of problems and a list of references. Some of
the problems serve as exercises for the material covered in the chapter. Others
are of a more advanced nature and are intended to provide practice in solving
problems associated with computer hardware architecture and design. A solu-
tions manual is available for the instructor from the publisher.

The book is suitable for a course in computer hardware systems in an
electrical engineering, computer engineering, or computer science depart-
ment. Parts of the book can be used in a variety of ways: as a first course in
computer hardware by covering Chapters 1 through 7; as a course in computer
organization and design with previous knowledge of digital logic design by
reviewing Chapter 4 and then covering chapters 5 through 13; as a course in
computer organization and architecture that covers the five functional units of
digital computers including control (Chapter 7), processing unit (Chapters 8
and 9), arithmetic operations (Chapter 10), input-output (Chapter 11), and
memory (Chapter 12). The book is also suitable for self-study by engineers and
scientists who need to acquire the basic knowledge of computer hardware
architecture.
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1-1 Digivel Cemputers

1.2 Lopic Gates

1.3 Boolean Algebra

1-4  Map Simplification
1.5  Combinationat Circuits
16 Flip-Flops

1.7 Sequential Circuits

1-1 Digital Computers

The digital computer is a digital system that performs various computational
tasks. The word digital implies that the information in the computer is repre-
sented by var:ables that take a limited number of discrete values. These values
are grocessed internally by components that can maintain a limited number of
discrete stades. The decimal digits 0, 1, 2,..., 9, for example, provide 10
discrete values. The first electronic digital compubers, deveioped in the late
1940s, were used prmarily for numerical compulations. In this case the dis-
crete elements are the digits. From this application the serm digital computer has
emerged. In practice, digital compulers function more reliably if only two
states are used. Because of the physical restriction of components, and because
human logic tends to be binary (i.e.. true-or-false, yes-or-no statements),
digital components that are constrained o take discete values are further
constrained to take only two values and are said to be binary.

Digital computers use the binary number system, which has two digits:
0 and 1. A binary digit is called a bit. Information is represented in digita)
computers in gioups of bits, By using various coding techniqgues, groups of bits
can be made to represent not only tinary numbers but also other disaete
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program

computer hardware

symbols, such as decimal digits or letters of the alphabet. By judicious use of
binary arrangements and by using various coding techniques, the groups of
bits are used to develop complete sets of instructions for performing various
types of computations.

In contrast to the common decimal numbers that employ the base 10
system, binary numbers use a base 2 system with two digits: 0 and 1. The
decimal equivalent of a binary number can be found by expanding it into a
power series with a base of 2. For example, the binary number 1001011 repre-
sents a quantity that can be converted to a decimal number by multiplying each
bit by the base 2 raised to an integer power as follows:

1X25+0x25+0x2+1Xx22+0x2+1x21+1%x2°=75

The seven bits 1001011 represent a binary number whose decimal equivalent
is 75. However, this same group of seven bits represents the letter K when used
in conjunction with a binary code for the letters of the alphabet. It may also
representa control code for specifying some decision logic in a particular digital
computer. In other words, groups of bits in a digital computer are used to
represent many different things. This is similar to the concept that the same
letters of an alphabet are used to construct different languages, such as English
and French.

A computer system is sometimes subdivided into two functional entities:
hardware and software. The hardware of the computer consists of all the
electronic components and electromechanical devices that comprise the phys-
ical entity of the device. Computer software consists of the instructions and
data that the computer manipulates to perform various data-processing tasks.
A sequence of instructions for the computer is called a program. The data that
are manipulated by the program constitute the data base.

A computer system is composed of its hardware and the system software
available for its use. The system software of a computer consists of a collection
of programs whose purpose is to make more effective use of the computer. The
programs included in a systems software package are referred to as the oper-
ating system. They are distinguished from application programs written by the
user for the purpose of solving particular problems. For example, a high-level
language program written by a user to solve particular data-processing needs
is an application program, but the compiler that translates the high-level
language program to machine language is a system program. The customer
who buys a computer system would need, in addition to the hardware, any
available software needed for effective operation of the computer. The system
software is an indispensable part of a total computer system. Its function is to
compensate for the differences that exist between user needs and the capability
of the hardware.

The hardware of the computer is usually divided into three major parts,
as shown in Fig. 1-1. The central processing unit (CPU) contains an arithmetic
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Figure 1.1 Block diagram of a digital compurer.

and logic unit for manipulating data, anumber of registers for staring data, and
control drcuits for fetching and executing instructions. The memoty of a
computer contains storage for instructions and data. It is called a random-
access memoty (RAM) because the CPU can access any location in memory at
random and rehieve the binaryinformation within a fixed intervai of time. The
input and output processor (IOP) contains electronic dscuits for communicat-
ing and conteolling the transfer of information between the computer and the
outside world, The input and output devices connected to the computer
include keyboards, printers, terminals, magnetic disk drives. and other com-
munication devices.

This book provides the basic knowledge necessacy to understand the
hardware operations of a computer system. The subject is sometimes consid-
ered from three different poin of view, depending on the interest of the
investigator. When dealing with computer hardware it is customary to distin-
guish between what is referred to as computer organization, computer design,
and computer architecture.

Computer organization is concerned with the way the hardware compo-
nents operate and the way they are connected together to form the computer
system. The vatious components are assumed to be in piace and the task is to
investigate the organirationai structure to vesify that the computer parts oper-
ate as intended.

Computer design is concerned with the hardware design of the compuber-
Once the computer spedfications are formulated, it is the task of the designer
to develop hardware for the system. Computer design is concerned with the
determination of whathardware should be used and how the parts shouid be
connected. This aspect of computer hardware is sometimes referted to as
computer implemenbation.

Computer architecture is concerned witk the structure and behavior of the
compuber as seen by the user. It indudes the infarmation formats, she instruc-
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tion set, and techniques for addressing memory. The architectural design of
a computer system is concerned with the specifications of the various func-
tional modules, such as processors and memories, and structuring them to-
gether into a computer system.

The book deals with all three subjects associated with computer hard-
ware. In Chapters 1 through 4 we present the various digital components used
in the organization and design of computer systems. Chapters 5 through 7
cover the steps that a designer must go through to design and program an
elementary digital computer. Chapters 8 and 9 deal with the architecture of the
central processing unit. In Chapters 11 and 12 we present the organization and
architecture of the input—output processor and the memory unit.

1-2 Logic Gates

Binary information is represented in digital computers by physical quantities
called signals. Electrical signals such as voltages exist throughout the computer
in either one of two recognizable states. The two states represent a binary
variable that can be equal to 1 or 0. For example, a particular digital computer
may employ a signal of 3 volts to represent binary 1 and 0.5 volt to represent
binary 0. The input terminals of digital circuits accept binary signals of 3 and
0.5 volts and the circuits respond at the output terminals with signals of 3 and
0.5 volts to represent binary input and output corresponding to 1 and 0,
respectively.

Binary logic deals with binary variables and with operations that assume
a logical meaning. It is used to describe, in algebraic or tabular form, the
manipulation and processing of binary information. The manipulation of bi-
nary information is done by logic circuits called gates. Gates are blocks of
hardware that produce signals of binary 1 or 0 when input logic requirements
are satisfied. A variety of logic gates are commonly used in digital computer
systems. Each gate has a distinct graphic symbol and its operation can be
described by means of an algebraic expression. The input—output relationship
of the binary variables for each gate can be represented in tabular form by a
truth table.

The names, graphic symbols, algebraic functions, and truth tables of
eight logic gates are listed in Fig. 1-2. Each gate has one or two binary input
variables designated by A and B and one binary output variable designated by
x. The AND gate produces the AND logic function: that is, the output is 1 if
input A and input B are both equal to 1; otherwise, the output is 0. These
conditions are also specified in the truth table for the AND gate. The table
shows that output xis 1 only when both input A and input B are 1. The algebraic
operation symbol of the AND function is the same as the multiplication symbol
of ordinary arithmetic. We can either use a dot between the variables or
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Figure 1-2 Digital logic gates.
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OR

inverter

NAND

NOR

exclusive-OR

concatenate the variables without an operation symbol between them. AND
gates may have more than two inputs, and by definition, the output is 1 if and
only if all inputs are 1.

The OR gate produces the inclusive-OR function; that is, the output is 1
if input A or input B or both inputs are 1; otherwise, the output is 0. The
algebraic symbol of the OR function is +, similar to arithmetic addition. OR
gates may have more than two inputs, and by definition, the output is 1 if any
input is 1.

The inverter circuitinverts the logicsense of a binary signal. It produces
the NOT, or complement, function. The algebraic symbol used for the logic
complement is either a prime or a bar over the variable symbol. In this book
we use a prime for the logic complement of a binary variable, while a bar over
the letter is reserved for designating a complement microoperation as defined
in Chap. 4.

The smallcircle in the output of the graphic symbol of an inverter desig-
nates a logic complement. A triangle symbol by itself designates a buffer
circuit. A buffer does not produce any particular logic function since the binary
value of the output is the same as the binary value of the input. This circuit
is used merely for power amplification. For example, a buffer that uses 3 volts
for binary 1 will produce an output of 3 volts when its input is 3 volts. However,
the amount of electrical power needed at the input of the buffer is much less
than the power produced at the output of the buffer. The main purpose of the
buffer is to drive other gates that require a large amount of power.

The NAND function is the complement of the AND function, as indicated
by the graphic symbol, which consists of an AND graphic symbol followed by
a small circle. The designation NAND is derived from the abbreviation of
NOT-AND. The NOR gate is the complement of the OR gate and uses an OR
graphic symbol followed by a small circle. Both NAND and NOR gates may
have more than two inputs, and the output is always the complement of the
AND or OR function, respectively.

The exclusive-OR gate has a graphic symbol similar to the OR gate except
for the additional curved line on the input side. The output of this gate is 1 if
any input is 1 but excludes the combination when both inputs are 1. The
exclusive-OR function has its own algebraic symbol or car be expressed in
terms of AND, OR, and complement operations as shown in Fig. 1-2. The
exclusive-NOR is the complement of the exclusive-OR, as indicated by the
small circle in the graphic symbol. The output of this gateis 1 only if both inputs
are equal to 1 or both inputs are equal to 0. A more fitting name for the
exclusive-OR operation would be an odd function; that is, its output is 1 if an
odd number of inputs are 1. Thus in a three-input exclusive-OR (odd) function,
the output is 1if only one inputis 1 or if all three inputs are 1. The exclusive-OR
and exclusive-NOR gates are commonly available with two inputs, and only
seldom are they found with three or more inputs.
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1-3 Boolean Algebra

Boolean algebra is an algebra that deals with binary variables and logic oper-
ations. The variables are designated by letters such as A, B, x, and y. The three
basic logic operations are AND, OR, and complement. A Boolean function can
be expressed algebraically with binary variables, the logic operation symbols,
parentheses, and equal sign. For a given value of the variables, the Boolean
function can be either 1 or 0. Consider, for example, the Boolean function

F=x+y'z

The function F is equal to 1 if x is 1 or if both y’ and z are equal to 1; F is equal
to 0 otherwise. But saying that y’ = 1 is equivalent to saying that y = 0 since
y' is the complement of y. Therefore, we may say that Fis equalto 1if x = 1
or if yz = 01. The relationship between a function and its binary variables can
berepresented in a truth table. To represent a function in a truth table we need
a list of the 2" combinations of the n binary variables. As shown in Fig. 1-3(a),
there are eight possible distinct combinations for assigning bits to the three
variables x, y, and z. The function F is equal to 1 for those combinations where
x =1or yz = 01; it is equal to 0 for all other combinations.

A Boolean function can be transformed from an algebraic expression into
a logic diagram composed of AND, OR, and inverter gates. The logic diagram
for F is shown in Fig. 1-3(b). There is an inverter for input y to generate its
complement y'. There is an AND gate for the term y'z, and an OR gate is used
to combine the two terms. In a logic diagram, the variables of the function are
taken to be the inputs of the circuit, and the variable symbol of the function
is taken as the output of the circuit.

The purpose of Boolean algebra is to facilitate the analysis and design of
digital circuits. It provides a convenient tool to:

1. Express in algebraic form a truth table relationship between binary
variables.

Figure 1-3 Truth table and logic diagram for F = x + y'z.

x y z F
0 0 o0fO x
0 0 1 1 -
0O 1 o0fO y F
0o 1 1 0
1 0 O 1 z
1 0 1 1
1 1 0 1
1 1 1 1
(a) Truth table (b) Logic diagram

www.EasyEngineering.net


http://easyengineering.net
http://easyengineering.net

www.EasyEngineering.net

8  CHAPTER ONE Digital Logic Circuits

Boolean expression

DeMorgan's theorem

2. Express in algebraic form the input-output relationship of logic
diagrams.

3. Find simpler circuits for the same function.
A Boolean function specified by a truth table can be expressed algebraically in
many different ways. By manipulating a Boolean expression according to
Boolean algebra rules, one may obtain a simpler expression that will require
fewer gates. To see how this is done, we must first study the manipulative
capabilities of Boolean algebra.

Table 1-1 lists the most basic identities of Boolean algebra. All the iden-
tities in the table can be proven by means of truth tables. The first eight
identities show the basic relationship between a single variable and itself, or
in conjunction with the binary constants 1 and 0. The next five identities (9
through 13) are similar to ordinary algebra. Identity 14 does not apply in
ordinary algebra but is very useful in manipulating Boolean expressions.
Identities 15 and 16 are called DeMorgan’s theorems and are discussed below.
The last identity states that if a variable is complemented twice, one obtains
the original value of the variable.

TABLE 1-1 Basic Identities of Boolean Algebra

1) x+0=x 2 x-0=0
@x+1=1 4 x1=x
G)x+x=x 6) x x=x
7 x+x'=1 ® x-x'=0
@) x+y=y+x (10) xy = yx

() x+y+z)=(x+y)+z
1) x(y+z)=xy +xz
19) (x +y) =x'y’

(12) x(yz) = (xy)z
(14) x +yx = (x + y)x + 2)
(16) (xy)' =x' +y’

17) (x') =x

The identities listed in the table apply to single variables or to Boolean
functions expressed in terms of binary variables. For example, consider the
following Boolean algebra expression:

AB'+C'D + AB' +C'D
By lettingx = AB’ + C'D the expression can be writtenasx + x. From identity
5 in Table 1-1 we find that x + x = x. Thus the expression can be reduced to
only two terms:
AB'+C'D+A'B+C'D=AB'+C'D

DeMorgan'’s theorem is very important in dealing with NOR and NAND
gates. It states thata NOR gate that performs the (x + y)' function is equivalent
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to the function x'y’. Similarly, a NAND function can be expressed by either
(xy)' or (x' + y'). For this reason the NOR and NAND gates have two distinct
graphic symbols, as shown in Figs. 1-4 and 1-5. Instead of representing a NOR
gate with an OR graphic symbol followed by a circle, we can represent it by
an AND graphic symbol preceded by circles in all inputs. The invert-AND
symbol for the NOR gate follows from DeMorgan’s theorem and from the
convention that small circles denote complementation. Similarly, the NAND
gate has two distinct symbols, as shown in Fig. 1-5.

To see how Boolean algebra manipulation is used to simplify digital
circuits, consider the logic diagram of Fig. 1-6 (a). The output of the circuit can
be expressed algebraically as follows:

F=ABC + ABC' + A'C

Each term corresponds to one AND gate, and the OR gate forms the logical
sum of the three terms. Two inverters are needed to complement A’ and C'.
The expression can be simplified using Boolean algebra.

F=ABC + ABC' + A'\C=AB(C+C')+ A'C
=AB + A'C

Note that (C + C)’ = 1by identity 7and AB - 1 = AB by identity 4 in Table 1-1.

The logic diagram of the simplified expression is drawn in Fig. 1-6 (b). It
requires only four gates rather than the six gates used in the circuit of Fig.
1-6 (a). The two circuits are equivalent and produce the same truth table rela-
tionship between inputs A, B, C and output F.

Figure 1-4 Two graphic symbols for NOR gate.

x x
¥D—u+y+z)' }'3}{}"2':& +y+2)
z

(a) OR-invert (b) invert-AND

Figure 1-5 Two graphic symbols for NAND gate.

x ’ x. . ’ ’ ’ ’
y (xyz) y x'+y' +2' = (xyz)
z z

(a) AND-invert (b) invert-OR
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O

‘DC F

(a) F=ABC +ABC' +AC

A —
B —

(B)F = AB + A'C

Figure 1.6 Two logic diagrams for the same Boolean function.

Complement of a Function

The complement of a function F when expressed in a truth table is obtained
by interchanging 1’s and 0’s in the values of F in the truth table. When the
function is expressed in algebraic form, the complement of the function can be
derived by means of DeMorgan’s theorem. The general form of DeMorgan'’s
theorem can be expressed as follows:

m+x+x+ - +x) =xinx--x,
(XX3 %) =xi+x3+x3+ - + x)

From the general DeMorgan’s theorem we can derive a simple procedure for
obtaining the complementof an algebraicexpression. This is done by changing
all OR operations to AND operations and all ANDoperations to OR operations
and then complementing each individual letter variable. As an example, con-
sider the following expression and its complement:

F=AB+C'D' +B'D

F'=(A"+B')(C + D)B + D')
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The complement expression is obtained by interchanging AND and OR oper-

ations and complementing each individual variable. Note that the complement
of C'is C.

1-4 Map Simplification

The complexity of the logic diagram that implements a Boolean function is
related directly to the complexity of the algebraic expression from which the
function is implemented. The truth table representation of a function is unique,
but the function can appear in many different forms when expressed alge-
braically. The expression may be simplified using the basic relations of Boolean
algebra. However, this procedure is sometimes difficult because it lacks specific
rules for predicting each succeeding step in the manipulative process. The map
method provides a simple, straightforward procedure for simplifying Boolean
expressions. This method may be regarded as a pictorial arrangement of the
truth table which allows an easy interpretation for choosing the minimum
number of terms needed to express the function algebraically. The map
method is also known as the Karnaugh map or K-map.

Each combination of the variables in a truth table is called a minterm. For
example, the truth table of Fig. 1-3 contains eight minterms. When expressed
in a truth table a function of n variables will have 2" minterms, equivalent to
the 2" binary numbers obtained from n bits. A Boolean function is equal to 1
for some minterms and to 0 for others. The information contained in a truth
table may be expressed in compact form by listing the decimal equivalent of
those minterms that produce a 1 for the function. For example, the truth table
of Fig. 1-3 can be expressed as follows:

F(x,y,2)= 2 (1,4,5,6,7)

The letters in parentheses list the binary variables in the order that they appear
in the truth table. The symbol 3, stands for the sum of the minterms that follow
in parentheses. The minterms that produce 1 for the function are listed in their
decimal equivalent. The minterms missing from the list are the ones that
produce 0 for the function.

The map is a diagram made up of squares, with each square representing
one minterm. The squares corresponding to minterms that produce 1 for the
function are marked by a 1 and the others are marked by a 0 or are left empty.
By recognizing various patterns and combining squares marked by 1’s in the
map, it is possible to derive alternative algebraic expressions for the function,
from which the most convenient may be selected.

The maps for functions of two, three, and four variables are shown in Fig.
1-7. The number of squares in a map of n variables is 2". The 2" minterms are
listed by an equivalent decimal number for easy reference. The minterm
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adjacent squares

B B
B BC A
A0 T AN\ 00 o1 711 10
0| 0 1 0|l 0 1 3 2
A{l 2 3 A{l 4 5 7 6
——
C
(a) Two-variable map (b) Three-variable map
CD ¢
(A,
48N\ 00 o1 711 10
00| O 1 3 2
01| 4 5 7 6
B
112 {13 | 15| 14
A
10[ 8 9 1} 10
——
D

(c) Four-variable map

Figure 1.7 Maps for two-, three-, and four-variable functions.

numbers are assigned in an orderly arrangement such that adjacent squares
represent minterms that differ by only one variable. The variable names are
listed across both sides of the diagonal line in the corner of the map. The 0's
and 1’s marked along each row and each column designate the value of the
variables. Each variable under brackets contains half of the squares in the map
where that variable appears unprimed. The variable appears with a prime
(complemented) in the remaining half of the squares.

The minterm represented by a square is determined from the binary
assignments of the variables along the left and top edges in the map. For
example, minterm 5 in the three-variable map is 101 in binary, which may be
obtained from the 1 in the second row concatenated with the 01 of the second
column. This minterm represents a value for the binary variables A, B, and C,
with A and C being unprimed and B being primed (i.e., AB’C). On the other
hand, minterm 5 in the four-variable map represents a minterm for four
variables. The binary number contains the four bits 0101, and the correspond-
ing term it represents is A’BC'D.

Minterms of adjacent squares in the map are identical except for one
variable, which appears complemented in one square and uncomplemented
in the adjacent square. According to this definition of adjacency, the squares
at the extreme ends of the same horizontal row are also to be considered
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adjacent. The same applies to the top and bottom squares of a column. As a
result, the four corner squares of a map must also be considered to be adjacent.

A Boolean function represented by a truth table is plotted into the map
by inserting 1’s in those squares where the function is 1. The squares contain-
ing 1's are combined in groups of adjacent squares. These groups must contain
a number of squares that is an integral power of 2. Groups of combined
adjacent squares may share one or more squares with one or more groups.
Each group of squares represents an algebraic term, and the OR of those terms
gives the simplified algebraicexpression for the function. The following exam-
ples show the use of the map for simplifying Boolean functions.

In the first example we will simplify the Boolean function

F(A,B,C) = 2 (3,4,6,7)

The three-variable map for this function is shown in Fig. 1-8. There are four
squares marked with 1’s, one for each minterm that produces 1 for the func-
tion. These squares belong to minterms 3, 4, 6, and 7 and are recognized from
Fig. 1-7(b). Two adjacent squares are combined in the third column. This
column belongs to both B and C and produces the term BC. The remaining two
squares with 1’s in the two corners of the second row are adjacent and belong
to row A and the two columns of C’, so they produce the term AC'. The
simplified algebraic expression for the function is the OR of the two terms:

F =BC + AC’
The second example simplifies the following Boolean function:
F(A,B,C) =2 (0,2,4,5,6)

The five minterms are marked with 1’s in the corresponding squares of the
three-variable map shown in Fig. 1-9. The four squares in the first and fourth
columns are adjacent and represent the term C'. The remaining square marked
with a 1 belongs to minterm 5 and can be combined with the square of minterm
4 to produce the term AB’. The simplified function is

F=C'+AB'

Figure 1-8 Map for F(A, B,C) = £(3,4,6,7).

A& LE
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B
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No=mn

Se——
C

Figure 1-9 Map for F(A, B, C) = £(0,2,4,5,6).

The third example needs a four-variable map.
F(A,B,C,D) = 2 (0,1,2,6,8,9,10)

The area in the map covered by this four-variable function consists of the
squares marked with 1’s in Fig. 1-10. The function contains 1’s in the four
corners that, when taken as a group, give the term B'D’. This is possible
because these four squares are adjacent when the map is considered with top
and bottom or left and right edges touching. The two 1's on the left of the top
row are combined with the two 1’s on the left of the bottom row to give the
term B’C’. The remaining 1 in the square of minterm 6 is combined with
minterm 2 to give the term A’CD’. The simplified function is

F=B'D'+B'C' + A'CD’

Product-of-Sums Simplification

The Boolean expressions derived from the maps in the preceding examples
were expressed in sum-of-products form. The product terms are AND terms
and the sum denotes the ORing of these terms. It is sometimes convenient to
obtain the algebraic expression for the function in a product-of-sums form. The

Figure 1-10 Map for F(A,B,C,D) = £(0,1,2,6,8,9,10).

STy

Dl
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sums are OR terms and the product denotes the ANDing of these terms. With
a minor modification, a product-of-sums form can be obtained from a map.

The procedure for obtaining a product-of-sums expression follows from
the basic properties of Boolean algebra. The 1’s in the map represent the
minterms that produce 1 for the function. The squares not marked by 1
represent the minterms that produce 0 for the function. If we mark the empty
squares with 0’s and combine them into groups of adjacent squares, we obtain
the complement of the function, F’. Taking the complement of F' produces an
expression for F in product-of-sums form. The best way to show this is by
example.

We wish to simplify the following Boolean function in both sum-of-
products form and product-of-sums form:

F(A,B,C,D) = % (0,1,2,5,8,9,10)
The 1’s marked in the map of Fig. 1-11 represent the minterms that produce
a 1 for the function. The squares marked with 0’s represent the minterms not
included in F and therefore denote the complement of F. Combining the
squares with 1’s gives the simplified function in sum-of-products form:

F=B'D'+B'C'+A'C'D

If the squares marked with 0’s are combined, as shown in the diagram, we
obtain the simplified complemented function:

F' = AB + CD + BD’

Taking the complement of F’, we obtain the simplified function in product-of-
sums form:

F=(A'+B'XC' +D')B' + D)

Figure 1-11 Map for F(A, B, C, D) = £(0,1,2,5,8,9,10).

c
——
vl flolf 1
of 1]jo]lf o
B
[o]] o 0
dI= t—
Vo1 floff 1
——
D
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NAND
implementation

NOR
implementation

don’t-care conditions

The logic diagrams of the two simplified expressions are shown in Fig. 1-12.
The sum-of-products expression is implemented in Fig. 1-12(a) with a group
of AND gates, one for each AND term. The outputs of the AND gates are
connected to the inputs of a single OR gate. The same function is implemented
in Fig. 1-12(b) in product-of-sums form with a group of OR gates, one for each
OR term. The outputs of the OR gates are connected to the inputs of a single
AND gate. In each case it is assumed that the input variables are directly
available in their complement, so inverters are not included. The pattern
established in Fig. 1-12 is the general form by which any Boolean function is
implemented when expressed in one of the standard forms. AND gates are
connected to a single OR gate when in sum-of-products form. OR gates are
connected to a single AND gate when in product-of-sums form.

A sum-of-products expression can be implemented with NAND gates as
shown in Fig. 1-13(a). Note that the second NAND gate is drawn with the
graphic symbol of Fig. 1-5(b). There are three lines in the diagram with small
circles at both ends. Two circles in the same line designate double complemen-
tation, and since (x')’ = x, the two circles can be removed and the resulting
diagram is equivalent to the one shown in Fig. 1-12(a). Similarly, a product-of-
sums expression can be implemented with NOR gates as shown in Fig. 1-13(b).
The second NOR gate is drawn with the graphic symbol of Fig. 1-4(b). Again
the two circles on both sides of each line may be removed, and the diagram
so obtained is equivalent to the one shown in Fig. 1-12(b).

Don’t-Care Conditions

The 1’s and (s in the map represent the minterms that make the function equal
to 1 or 0. There are occasions when it does not matter if the function produces
0Oor 1 for a given minterm. Since the function may be either 0 or 1, we say that
we don'’t care what the function output is to be for this minterm. Minterms that
may produce either 0 or 1 for the function are said to be don’t-care conditions
and are marked with an X in the map. These don’t-care conditions can be used
to provide further simplification of the algebraic expression.

Figure 1-12 Logic diagrams with AND and OR gates.

B'— A
D' w— B
c
c F - F
A
D D
(a) Sum of products: (b) Product of sums:
F=B'D'+B'C'+A'C'D F=(A'"+B")(C'+D')(B' +D)
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B’ —g A’
D' — B
p
¢ o F
A
D
(2) With NAND gates (b) With NOR gates

Figure 1-13 Logic diagrams with NAND or NOR gates.

When choosing adjacent squares for the function in the map, the X’s may
be assumed to be either 0 or 1, whichever gives the simplest expression. In
addition, an X need not be used at all if it does not contribute to the simplifi-
cation of the function. In each case, the choice depends only on the simplifi-
cation that can be achieved. As an example, consider the following Boolean
function together with the don’t-care minterms:

F(A,B,C) = 2 (0,2,6)
d(A,B,C) = 2 (1,3,5)

The minterms listed with F produce a 1 for the function. The don’t-care min-
terms listed with d may produce either a 0 or a 1 for the function. The remaining
minterms, 4 and 7, produce a 0 for the function. The map is shown in Fig. 1-14.
The minterms of F are marked with 1's, those of d are marked with X’s, and
the remaining squares are marked with 0’s. The 1’s and X’s are combined in
any convenient manner so as to enclose the maximum number of adjacent
squares. It is not necessary to include all or any of the X’s, but all the 1’s must
be included. By including the don’t-care minterms 1 and 3 with the 1’s in the
first row we obtain the term A’. The remaining 1 for minterm 6 is combined
with minterm 2 to obtain the term BC'. The simplified expression is

F=A"+BC'
Note that don’t-care minterm 5 was not included because it does not contribute
to the simplification of the expression. Note also that if don’t-care minterms
1 and 3 were not included with the 1’s, the simplified expression for F would
have been

F=A'C'+ BC'

This would require two AND gates and an OR gate, as compared to the ex-
pression obtained previously, which requires only one AND and one OR gate.
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block diagram

A{OXOJ

Figure 1-14 Example of map with don't-care conditions.

The function is determined completely once the X’s are assigned to the

1’s or 0’s in the map. Thus the expression
F=A"+BC
represents the Boolean function
F(A,B,C)=2(0,1,2,3,6)

It consists of the original minterms 0, 2, and 6 and the don’t-care minterms 1
and 3. Minterm 5 is not included in the function. Since minterms 1, 3, and 5
were specified as being don’t-care conditions, we have chosen minterms 1 and

3 to produce a 1 and minterm 5 to produce a 0. This was chosen because this
assignment produces the simplest Boolean expression.

1-5 Combinational Circuits

A combinational circuit is a connected arrangement of logic gates with a set of
inputs and outputs. At any given time, the binary values of the outputs are a
function of the binary combination of the inputs. A block diagram of a combi-
national circuit is shown in Fig. 1-15. The n binary input variables come from
an external source, the m binary output variables go to an external destination,
and in between there is an interconnection of logic gates. A combinational
circuit transforms binary information from the given input data to the required
output data. Combinational circuits are employed in digital computers for
generating binary control decisions and for providing digital components
required for data processing.

A combinational circuit can be described by a truth table showing the
binary relationship between the n input variables and the m output variables.
The truth table lists the corresponding output binary values for each of the 2"
input combinations. A combinational circuit can also be specified with m
Boolean functions, one for each output variable. Each output function is
expressed in terms of the n input variables.
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| | I
n input | Combinational | m output
variables | circuit | variables
I |
a—ty | ey

Figure 1-15 Block diagram of a combinational circuit.

The analysis of a combinational circuit starts with a given logic circuit
diagram and culminates with a set of Boolean functions or a truth table. If the
digital circuit is accompanied by a verbal explanation of its function, the
Boolean functions or the truth table is sufficient for verification. If the function
of the circuit is under investigation, itis necessary to interpret the operation of
the circuit from the derived Boolean functions or the truth table. The success
of such investigation is enhanced if one has experience and familiarity with
digital circuits. The ability to correlate a truth table or a set of Boolean functions
with an information-processing task is an art that one acquires with experience.

The design of combinational circuits starts from the verbal outline of the
problem and ends in a logic circuit diagram. The procedure involves the
following steps:

1. The problem is stated.

2. The input and output variables are assigned letter symbols.

3. Thetruthtable thatdefines the relationship between inputs and outputs
is derived.

4. The simplified Boolean functions for each output are obtained.

5. The logic diagram is drawn.

To demonstrate the design of combinational circuits, we present two
examples of simple arithmetic circuits. These circuits serve as basic building
blocks for the construction of more complicated arithmetic circuits.

Half-Adder

The most basic digital arithmetic circuit is the addition of two binary digits. A
combinational circuit that performs the arithmetic addition of two bits is called
a half-adder. One that performs the addition of three bits (two significant bits
and a previous carry) is called a full-adder. The name of the former stems from
the fact that two half-adders are needed to implement a full-adder.

The input variables of a half-adder are called the augend and addend
bits. The output variables the sum and carry. It is necessary to specify two
output variables because the sum of 1 + 1 is binary 10, which has two digits.
We assign symbols x and y to the two input variables, and S (for sum) and C
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Figure 1-16 Half-adder.

(for carry) to the two output variables. The truth table for the half-adder is
shown in Fig. 1-16(a). The C output is 0 unless both inputs are 1. The S output
represents the least significant bit of the sum. The Boolean functions for the
two outputs can be obtained directly from the truth table:

S=xy+xy'=xDy
C=uxy

The logic diagram is shown in Fig. 1-16(b). It consists of an exclusive-OR gate
and an AND gate.

Full-Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three
input bits. It consists of three inputs and two outputs. Two of the input
variables, denoted by x and y, represent the two significant bits to be added.
The third input, z, represents the carry from the previous lower significant
position. Two outputs are necessary because the arithmetic sum of three binary
digits Tanges in value from O to 3, and binary 2 or 3 needs two digits. The two
outputs are designated by the symbols S (for sum) and C (for carry). The binary
variable S gives the value of the least significant bit of the sum. The binary
variable C gives the output carry. The truth table of the full-adder is shown in
Table 1-2. The eight rows under the input variables designate all possible
combinations that the binary variables may have. The value of the output
variables are determined from the arithmetic sum of the input bits. When all
input bits are 0, the output is 0. The S output is equal to 1 when only one input
is equal to 1 or when all three inputs are equal to 1. The C output has a carry
of 1 if two or three inputs are equal to 1.

The maps of Fig. 1-17 are used to find algebraic expressions for the two
output variables. The 1’s in the squares for the maps of S and C are determined
directly from the minterms in the truth table. The squares with 1’s for the S
output do not combine in groups of adjacent squares. But since the output is
1 when an odd number of inputs are 1, S is an odd function and represents
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TABLE 1-2 Truth Table for Full-Adder
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the exclusive-OR relation of the variables (see the discussion at the end of Sec.
1-2). The squares with 1’s for the C output may be combined in a variety of
ways. One possible expression for C is

C=xy+ (xy +xy')z

Realizing that x'y + xy’ = x @y and including the expression for output S, we
obtain the two Boolean expressions for the full-adder:

S=x®ydz
C=xy+ (x®y)z

The logic diagram of the full-adder is drawn in Fig. 1-18. Note that the full-
adder circuit consists of two half-adders and an OR gate. When used in
subsequent chapters, the full-adder (FA) will be designated by a block diagram
as shown in Fig. 1-18(b).

Figure 1-17 Maps for full-adder.

y y

EE | I (]

[SE— —_—
z z
S=xXyz+xXyz' +xy'z’ +xyz C=xy+xz+yz
=x®y®z =xy+(y+x')z
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Figure 1-18 Full-adder circuit.

1-6 Flip-Flops

The digital circuits considered thus far have been combinational, where the
outputs at any given time are entirely dependent on the inputs that are present
at that time. Although every digital system is likely to have a combinational
circuit, most systems encountered in practice also include storage elements,
which require that the system be described in terms of sequential circuits. The
most common type of sequential circuit is the synchronous type. Synchronous
sequential circuits employ signals that affect the storage elements only at
discrete instants of time. Synchronization is achieved by a timing device called
a clock pulse generator that produces a periodic train of clock pulses. The clock
pulses are distributed throughout the system in such a way that storage
elements are affected only with the arrival of the synchronization pulse.
Clocked synchronous sequential circuits are the type most frequently encoun-
tered in practice. They seldom manifest instability problems and their timing
is easily broken down into independent discrete steps, each of which may be
considered separately.

The storage elements employed in clocked sequential circuits are called
flip-flops. A flip-flop is a binary cell capable of storing one bit of information.
It has two outputs, one for the normal value and one for the complement value
of the bit stored in it. A flip-flop maintains a binary state until directed by a
clock pulse to switch states. The difference among various types of flip-flops
is in the number of inputs they possess and in the manner in which the inputs
affect the binary state. The most common types of flip-flops are presented
below.

SR Flip-Flop

The graphic symbol of the SR flip-flop is shown in Fig. 1-19(a). It has three
inputs, labeled S (for set), R (for reset), and C (for clock). It has an output Q
and sometimes the flip-flop has a complemented output, which is indicated
with a small circle at the other output terminal. There is an arrowhead-shaped
symbol in front of the letter C to designate a dynamic input. The dynamic
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(a) Graphic symbol (b) Characteristic table

Figure 1-19 SR flip-flop.

indicator symbol denotes the fact that the flip-flop responds to a positive
transition (from O to 1) of the input clock signal.

The operation of the SR flip-flop is as follows. If there is no signal at the
clock input C, the output of the circuit cannot change irrespective of the values
at inputs S and R. Only when the clock signal changes from 0 to 1 can the
output be affected according to the values in inputs Sand R.If S = 1andR = 0
when C changes from 0 to 1, output Qissetto1l.If S =0and R = 1whenC
changes from 0 to 1, output Q is cleared to 0. If both S and R are 0 during the
clock transition, the output does not change. When both S and R are equal to
1, the output is unpredictable and may go to either 0 or 1, depending on
internal timing delays that occur within the circuit.

The characteristic table shown in Fig. 1-19(b) summarizes the operation
of the SR flip-flop in tabular form. The S and R columns give the binary values
of the two inputs. Q(t) is the binary state of the Q output at a given time
(referred to as present state). Q(f + 1) is the binary state of the Q output after
the occurrence of a clock transition (referred to as next state). If S =R =0, a
clock transition produces no change of state [i.e., Q(t + 1) = Q(t)]. If S=0
and R =1, the flip-flop goes to the 0 (clear) state. If S =1 and R = 0, the
flip-flop goes to the 1 (set) state. The SR flip-flop should not be pulsed when
S = R = 1 since it produces an indeterminate next state. This indeterminate
condition makes the SR flip-flop difficult to manage and therefore it is seldom
used in practice.

D Flip-Flop

The D (data) flip-flop is a slight modification of the SR flip-flop. An SR flip-flop

is converted to a D flip-flop by inserting an inverter between S and R and

assigning the symbol D to the single input. The D input is sampled during the

occurrence of a clock transition from 0 to 1. If D = 1, the output of the flip-flop

goes to the 1 state, but if D = 0, the output of the flip-flop goes to the O state.
The graphic symbol and characteristic table of the D flip-flop are shown

in Fig. 1-20. From the characteristic tablem%sg%ﬁé%gﬁﬁtg%ﬁe Q¢ +1)
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(a) Graphic symbol (b) Characteristic table

Figure 1-20 D flip-flop.

is determined from the D input. The relationship can be expressed by a
characteristic equation:

Qt+1)=D

This means that the Q output of the flip-flop receives its value from the D input
every time that the clock signal goes through a transition from 0 to 1.

Note that no input condition exists that will leave the state of the D
flip-flop unchanged. Although a D flip-flop has the advantage of having only
one input (excluding C), it has the disadvantage that its characteristic table does
not have a 'no change” condition Q(t + 1) = Q(t). The no change” condition
can be accomplished either by disabling the clock signal or by feeding the
output back into the input, so that clock pulses keep the state of the flip-flop
unchanged.

JK Flip-Flop

A JK flip-flop is a refinement of the SR flip-flop in that the indeterminate
condition of the SR type is defined in the JK type. Inputs ] and K behave like
inputs S and R to set and clear the flip-flop, respectively. When inputs ] and
K are both equal to 1, a clock transition switches the outputs of the flip-flop
to their complement state.

The graphic symbol and characteristic table of the JK flip-flop are shown
in Fig. 1-21. The ] input is equivalent to the S (set) input of the SR flip-flop,
and the K input is equivalent to the R (clear) input. Instead of the indeterminate
condition, the JK flip-flop has a complement condition Q(t + 1) = Q’(t) when
both J and K are equal to 1.

T Flip-Flop

Another type of flip-flop found in textbooks is the T (toggle) flip-flop. This
flip-flop, shown in Fig. 1-22, is obtained from a JK type when inputs ] and K
are connected to provide a single input designated by T. The T flip-flop
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(a) Graphic symbol (b) Characteristic table

Figure 1-21 JK flip-flop.
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(a) Graphic symbol (b) Characteristic table

Figure 1-.22 T flip-flop.

therefore has only two conditions. When T = 0 (J] = K = 0) a clock transition
does not change the state of the flip-flop. When T =1 (] = K = 1) a clock
transition complements the state of the flip-flop. These conditions can be
expressed by a characteristic equation:

Qt+1)=Qt)®T

Edge-Triggered Flip-Flops
The most common type of flip-flop used to synchronize the state change during
a clock pulse transition is the edge-triggered flip-flop. In this type of flip-flop,
output transitions occur at a specific level of the clock pulse. When the pulse
input level exceeds this threshold level, the inputs are locked out so that the
flip-flop is unresponsive to further changes in inputs until the clock pulse
returns to 0 and another pulse occurs. Some edge-triggered flip-flops cause a
transition on the rising edge of the clock signal (positive-edge transition), and
others cause a transition on the falling edge (negative-edge transition).
Figure 1-23(a) shows the clock pulse signal in a positive-edge-triggered
D flip-flop. The value in the D input is transferred to the Q output when the
clock makes a positive transition. The output cannot change when the clock
is in the 1 level, in the 0 level, or in a transition from the 1 level to the 0 level.
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(a) Positive-edge-triggered D flip-flop.
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(b) Negative-edge-triggered D flip-flop.

Figure 1-23 Edge-triggered flip-flop.

The effective positive clock transition includes a minimum time called the setup
timein which the D input must remain at a constant value before the transition,
and a definite time called the hold time in which the D input must not change
after the positive transition. The effective positive transition is usually a very
small fraction of the total period of the clock pulse.

Figure 1-23(b) shows the corresponding graphic symbol and timing dia-
gram for a negative-edge-triggered D flip-flop. The graphic symbol includes a
negation small circle in front of the dynamic indicator at the C input. This
denotes a negative-edge-triggered behavior. In this case the flip-flop responds
to a transition from the 1 level to the 0 level of the clock signal.

Another type of flip-flop used in some systems is the master-slave flip-
flop. This type of circuit consists of two flip-flops. The first is the master, which
responds to the positive level of the clock, and the second is the slave, which
responds to the negative level of the clock. The result is that the output changes
during the 1-to-0 transition of the clock signal. The trend is away from the use
of master-slave flip-flops and toward edge-triggered flip-flops.

Flip-flops available in integrated circuit packages will sometimes provide
special input terminals for setting or clearing the flip-flop asynchronously.
These inputs are usually called “preset” and “clear.” They affect the flip-flop
on a negative level of the input signal without the need of a clock pulse. These
inputs are useful for bringing the flip-flops to an initial state prior to its clocked
operation.
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Excitation Tables

The characteristic tables of flip-flops specify the next state when the inputs and
the present state are known. During the design of sequential circuits we usually
know the required transition from present state to next state and wish to find
the flip-flop input conditions that will cause the required transition. For this
reason we need a table that lists the required input combinations for a given
change of state. Such a table is called a flip-flop excitation table.

Table 1-3 lists the excitation tables for the four types of flip-flops. Each
table consists of two columns, Q(f) and Q(t + 1), and a column for each input
to show how the required transition is achieved. There are four possible
transitions from present state Q(t) to next state Q(t + 1). The required input
conditions for each of these transitions are derived from the information
available in the characteristic tables. The symbol X in the tables represents a
don’t-care condition; that is, it does not matter whether the input to the
flip-flop is 0 or 1.

TABLE 1-3 Excitation Table for Four Flip-Flops

SR flip-flop D flip-flop
Q) Qt+1) S R QY Qe +1) D
0 0 0 X 0 0 0
0 1 1 0 0 1 1
1 0 0 1 1 0 0
1 1 X 0 1 1 1
JK flip-flop T flip-flop
Q) Qi +1) ] K Q) QE+1) T
0 0 0 x 0 0 0
0 1 1 X 1] 1 1
1 0 X 1 1 0 1
1 1 X 0 1 1 0

The reason for the don’t-care conditions in the excitation tables is that
there are two ways of achieving the required transition. For example, in a JK
flip-flop, a transition from present state of 0 to a next state of 0 can be achieved
by having inputs ] and K equal to 0 (to obtain no change) or by letting ] = 0
and K = 1 to clear the flip-flop (although it is already cleared). In both cases
Jmust be 0, but K is 0 in the first case and 1 in the second. Since the required
transition will occur in either case, we mark the K input with a don’t-care X
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input equation

and let the designer choose either 0 or 1 for the K input, whichever is more
convenient.

1-7 Sequential Circuits

A sequential circuit is an interconnection of flip-flops and gates. The gates by
themselves constitute a combinational circuit, but when included with the
flip-flops, the overall circuit is classified as a sequential circuit. The block
diagram of a clocked sequential circuit is shown in Fig. 1-24. It consists of a
combinational circuit and a number of clocked flip-flops. In general, any
number or type of flip-flops may be included. As shown in the diagram, the
combinational circuit block receives binary signals from external inputs and
from the outputs of flip-flops. The outputs of the combinational circuit go to
external outputs and to inputs of flip-flops. The gates in the combinational
circuit determine the binary value to be stored in the flip-flops after each clock
transition. The outputs of flip-flops, in turn, are applied to the combinational
circuit inputs and determine the circuit’s behavior. This process demonstrates
that the external outputs of a sequential circuit are functions of both external
inputs and the present state of the flip-flops. Moreover, the next state of
flip-flops is also a function of their present state and external inputs. Thus a
sequential circuit is specified by a time sequence of external inputs, external
outputs, and internal flip-flop binary states.

Flip-Flop Input Equations

An example of a sequential circuit is shown in Fig. 1-25. It has one input
variable x, one output variabley, and two clocked D flip-flops. The AND gates,
OR gates, and inverter form the combinational logic part of the circuit. The
interconnections among the gates in the combinational circuit can be specified
by a set of Boolean expressions. The part of the combinational circuit that
generates the inputs to flip-flops are described by a set of Boolean expressions
called flip-flop input equations. We adopt the convention of using the flip-flop
input symbol to denote the input equation variable name and a subscript to

Figure 1-24 Block diagram of a clocked synchronous sequential circuit.
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Figure 1-25 Example of a sequential circuit.

designate the symbol chosen for the output of the flip-flop. Thus, in Fig. 1-25,
we have two input equations, designated D, and Dj. The first letter in each
symboldenotes the D input of a D flip-flop. The subscript letter is the symbol
name of the flip-flop. The input equations are Boolean functions for flip-flop
input variables and can be derived by inspection of the circuit. Since the output
of the OR gate is connected to the D input of flip-flop A, we write the first input
equation as

D4 = Ax + Bx

where A and B are the outputs of the two flip-flops and x is the external input.
The second input equation is derived from the single AND gate whose output
is connected to the D input of flip-flop B:

Ds =A'x
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present state

next state

The sequential circuit also has an external output, which is a function of
the input variable and the state of the flip-flops. This output can be specified
algebraically by the expression

y = Ax' + Bx'

From this example we note that a flip-flop input equation is a Boolean
expression for a combinational circuit. The subscripted variable is a binary
variable name for the output of a combinational circuit. This output is always
connected to a flip-flop input.

State Table

The behavior of a sequential circuit is determined from the inputs, the outputs,
and the state of its flip-flops. Both the outputs and the next state are a function
of the inputs and the present state. A sequential circuit is specified by a state
table that relates outputs and next states as a function of inputs and present
states. In clocked sequential circuits, the transition from present state to next
state is activated by the presence of a clock signal.

The state table for the circuit of Fig. 1-25 is shown in Table 1-4. The table
consists of four sections, labeled present state, input, next state, and output. The
present-state section shows the states of flip-flops A and B at any given time
t. The input section gives a value of x for each possible present state. The
next-state section shows the states of the flip-flops one clock period later at time
t + 1. The output section gives the value of y for each present state and input
condition.

The derivation of a state table consists of first listing all possible binary
combinations of present state and inputs. In this case we have eight binary
combinations from 000 to 111. The next-state values are then determined from
the logic diagram or from the input equations. The input equation for flip-flop
Ais

D, = Ax + Bx

The next-state value of a each flip-flop is equal to its D input value in the present
state. The transition from present state to next state occurs after application of
a clock signal. Therefore, the next state of A is equal to 1 when the present state
and input values satisfy the conditions Ax = 1 or Bx = 1, which makes D,
equal 1. This is shown in the state table with three 1's under the column for
next state of A. Similarly, the input equation for flip-flop B is

Ds =A'x

www.EasyEngineering.net


http://easyengineering.net
http://easyengineering.net

state table

state diagram

www.EasyEngineering.net
YENg g SECTION 1.7 Sequential Circuits 31

The next state of B in the state table is equal to 1 when the present state of A
is 0 and input x is equal to 1. The output column is derived from the output
equation

y = Ax' + Bx'

TABLE 1-4 State Table for Circuit of Fig. 1-25

Present Next
state Input state Output

A B x A B y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 1 1 0 0

The state table of any sequential circuit is obtained by the procedure used
in this example. In general, a sequential circuit with m flip-flops, n input
variables, and p output variables will contain m columns for present state, n
columns for inputs, m columns for next state, and p columns for outputs. The
present state and input columns are combined and under them we list the 2™ * "
binary combinations from 0 through 2"*" — 1. The next-state and output
columns are functions of the present state and input values and are derived
directly from the circuit or the Boolean equations that describe the circuit.

State Diagram

The information available in a state table can be represented graphically in a
state diagram. In this type of diagram, a state is represented by a circle, and
the transition between states is indicated by directed lines connecting the
circles. The state diagram of the sequential circuit of Fig. 1-25 is shown in Fig.
1-26. The state diagram provides the same information as the state table and
is obtained directly from Table 1-4. The binary number inside each circle
identifies the state of the flip-flops. The directed lines are labeled with two
binary numbers separated by a slash. The input value during the present state
is labeled first and the number after the slash gives the output during the
present state. For example, the directed line from state 00 to 01 is labeled 1/0,
meaning that when the sequential circuitis in the present state 00 and the input
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binary counter
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Figure 1-26 State diagrams of sequential circuit.

is 1, the output is 0. After a clock transition, the circuit goes to the next state
01. The same clock transition may change the input value. If the input changes
to 0, the output becomes 1, but if the input remains at 1, the output stays at
0. This information is obtained from the state diagram along the two directed
lines emanating from the circle representing state 01. A directed line connect-
ing a circle with itself indicates that no change of state occurs.

There is no difference between a state table and a state diagram except
in the manner of representation. The state table is easier to derive from a given
logic diagram and the state diagram follows directly from the state table. The
state diagram gives a pictorial view of state transitions and is the form suitable
for human interpretation of the circuit operation. For example, the state dia-
gram of Fig. 1-26 clearly shows that starting from state 00, the output is 0 as
long as the input stays at 1. The first 0 input after a string of 1’s gives an output
of 1 and transfers the circuit back to the initial state 00.

Design Example

The procedure for designing sequential circuits will be demonstrated by a
specific example. The design procedure consists of first translating the circuit
specifications into a state diagram. The state diagram is then converted into a
state table. From the state table we obtain the information for obtaining the
logic circuit diagram.

We wish to design a clocked sequential circuit that goes through a se-
quence of repeated binary states 00, 01, 10, and 11 when an external input x
is equal to 1. The state of the circuit remains unchanged when x = 0. This type
of circuit is called a 2-bit binary counter because the state sequence is identical
to the count sequence of two binary digits. Input x is the control variable that
specifies when the count should proceed.

The binary counter needs two flip-flops to represent the two bits. The
state diagram for the sequential circuit is shown in Fig. 1-27. The diagram is
drawn to show that the states of the circuit follow the binary count as long as
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Figure 1-27 State diagram for binary counter.

x = 1 The state following 11 is 00, which causes the count to be repeated. If
x = 0, the state of the circuit remains unchanged. This sequential circuit has
no external outputs, and therefore only the input value is labeled in the
diagram. The state of the flip-flops is considered as the outputs of the counter.

We have already assigned the symbol x to the input variable. We now
assign the symbols A and B to the two flip-flop outputs. The next state of A
and B, as a function of the present state and input x, can be transferred from
the state diagram into a state table. The first five columns of Table 1-5 constitute
the state table. The entries for this table are obtained directly from the state
diagram.

The excitation table of a sequential circuit is an extension of the state table.
This extension consists of a list of flip-flop input excitations that will cause the

TABLE 1-5 Excitation Table for Binary Counter

Present Next
state Input state Flip-flop inputs

A B x A B Ja Ka Is Ks
0 0 0 0 0 0 X 0 X
0 0 1 0 1 0 X 1 X
0 1 0 0 1 0 X X 0
0 1 1 1 0 1 X X 1
1 0 0 1 0 X 0 0 X
1 0 1 1 1 X 0 1 X
1 1 0 1 1 X 0 X 0
1 1 1 0 0 X 1 X 1
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required state transitions. The flip-flop input conditions are a function of the
type of flip-flop used. If we employ JK flip-flops, we need columns for the |
and K inputs of each flip-flop. We denote the inputs of flip-flop A by J, and
Ka, and those of flip-flop B by ]z and Kj.

The excitation table for the JK flip-flop specified in Table 1-3 is now used
to derive the excitation table of the sequential circuit. For example, in the first
row of Table 1-5, we have a transition for flip-flop A from 0 in the present state
to 0in the next state. In Table 1-3 we find that atransition of states from Q(t) = 0
to Q(t + 1) = 0 in a JK flip-flop requires that input ] = 0 and input K = X. So
0and X are copied in the firstrow under], and K,, respectively. Since the first
row also shows a transition for flip-flop B from 0 in the present state to 0 in
the next state, 0 and X are copied in the first row under J; and K;. The second
row of Table 1-5 shows a transition for flip-flop B from 0 in the present state
to 1 in the next state. From Table 1-3 we find that a transition from Q(t) = 0
to Q(t + 1) = 1 requires that input ] = 1 and input K = X. So 1 and X are
copied in the second row under J; and Kj, respectively. This process is contin-
ued for each row of the table and for each flip-flop, with the input conditions
as specified in Table 1-3 being copied into the proper row of the particular
flip-flop being considered.

Let us now consider the information available in an excitation table such
as Table 1-5. Weknow that a sequential circuit consists of a number of flip-flops
and a combinational circuit. From the block diagram of Fig. 1-24, we note that
the outputs of the combinational circuit must go to the four flip-flop inputs J »,
Ka, Js, and Kj. The inputs to the combinational circuit are the external input
x and the present-state values of flip-flops A and B. Moreover, the Boolean
functions that specify a combinational circuit are derived from a truth table that
shows the input—output relationship of the circuit. The entries that list the
combinational circuit inputs are specified under the "present state” and “in-
put” columns in the excitation table. The combinational circuit outputs are
specified under the “flip-flop inputs” columns. Thus an excitation table trans-
forms a state diagram to a truth table needed for the design of the combina-
tional circuit part of the sequential circuit.

The simplified Boolean functions for the combinational circuit can now
be derived. The inputs are the variables A, B, and x. The outputs are the
variables J4, K4, |5, and Kp. The information from the excitation table is trans-
ferred into the maps of Fig. 1-28, where the four simplified flip-flop input
equations are derived:

Ja = Bx K4 = Bx
Js=x Ky =1x
The logic diagram is drawn in Fig. 1-29 and consists of two JK flip-flops and

an AND gate. Note that inputs ] and K determine the next state of the counter
when a clock signal occurs. If both | and K are equal to 0, a clock signal will
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—_— —_—
x x
Ja=Bx K4=Bx
B B
—_——— —_———
1 X X X X 1
A{ 1 X X A{ X X 1
—_— —_—
x x
Jg=x Kg=x

Clock —

Figure 1-29 Logic diagram of a 2-bit binary counter.
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have no effect; that is, the state of the flip-flops will not change. Thus when
x = 0, all four inputs of the flip-flops are equal to 0 and the state of the flip-flops
remains unchanged even though clock pulses are applied continuously.

Design Procedure

The design of sequential circuits follows the outline described in the preceding
example. The behavior of the circuit is first formulated in a state diagram. The
number of flip-flops needed for the circuit is determined from the number of
bits listed within the circles of the state diagram. The number of inputs for the
circuit is specified along the directed lines between the circles. We then assign
letters to designate all flip-flops and input and output variables and proceed
to obtain the state table.

For m flip-flops and n inputs, the state table will consist of m columns for
the present state, n columns for the inputs, and m columns for the next state.
The number of rows in the table will be up to 2™ * ", one row for each binary
combination of present state and inputs. For each row we list the next state as
specified by the statediagram. Next, the flip-flop type to be used in the circuit
is chosen. The state table is then extended into an excitation table by including
columns for each input of each flip-flop. The excitation table for the type of
flip-flop in use can be found in Table 1-3. From the information available in this
table and by inspecting present state-to-nextstate transitions in the state table,
we obtain the information for the flop-flop input conditions in the excitation
table.

The truth table for the combinational circuit part of the sequential circuit
is available in the excitation table. The present-state and input columns consti-
tute the inputs in the truth table. The flip-flop input conditions constitute the
outputs in the truth table. By means of map simplification we obtain a set of
flip-flop input equations for the combinational circuit. Each flip-flop input
equation specifies a logic diagram whose output must be connected to one of
the flip-flop inputs. The combinational circuit so obtained, together with the
flip-flops, constitutes the sequential circuit.

The outputs of flip-flops are often considered to be part of the outputs
of the sequential circuit. However, the combinational circuit may also contain
external outputs. In such a case the Boolean functions for the external outputs
are derived from the state table by combinational circuit design techniques.

A set of flip-flop input equations specifies a sequential circuit in algebraic
form. The procedure for obtaining the logic diagram from a set of flip-flop input
equations is a straightforward process. First draw the flip-flops and label all
their inputs and outputs. Then draw the combinational circuit from the
Boolean expressions given by the flip-flop input equations. Finally, connect
outputs of flip-flops to inputs in the combinational circuit and outputs of the
combinational circuit to flip-flop inputs.
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1-1.

1-2,

1-3.

14.

1-5.

1-6.

1.7,

18.

1-8.

Determine by maans of a truth table the validity of DeMorgan‘s theorem for
theee variables: (ABC)' = A’ + B' +C",

List the truth tabieof a three-variable extusive-OR (0dd) functiarc r = A ©
B@C.

Simplify the following expressimns using oolezn algebra.

a. A+ AB

b. AB + AB*

€ A’BC + AC

d. A’'B+ABC’ + ABC

Sionplify the &nlivwing exprasSons using Boolean algebra.

2. 4B + A(CD + CD")

b. (BC' + A'D) (AB' + CD)

Using DeMorgan’s thearem, show that

& (A+B)(A'+8) =0

b.A+A'B+.4'B =1

Grven the Boolean expression F = 1y + nyz':

a. Derive an algebraic expression for the complement F'.

b. Show thatF - F' =0,

¢ Show that F + F' = 1.

Given the Boolean function
Fmxy'z+2yz+ayz
a. List the truth table of the function.
b. Diaw the Jogic dlagram using the original Boalean expression.
c. Simplify the al gebralc expeession using Boolean algebra.
d. List the truth table of the Ruiction from the simplified expeessim and
show thal it is the same as the truth (able in pait (a).

e. D:aw the bgic diagram from the simplified expression and compare the
total number of gates with the diagram of pa:t (b).

Simptifyr the following Boolean funcBons using vee-variable maps.
o Flx,y,2) =2 (0.1,57)

b. F(x,y,2) = %(1,2,3,6.7)

o F(x,y,2) = % (3,5.6,7)

A E(A,B,C)=2 (0,2.3.4.6)

Simplify the fallowing Baplean funBons using four-variable maps.
a. F(A.B,C,D) =2 (4,6,7,15)

b. F(4,B8,C,D)= 2 (3,7.11.13,14. 15)

¢ F{A,B,C,D) =2 (6,1,2.4,5,7,11,15)

& F(A,B,C.D) = 2 (0,2.4,5.6,7.8,10. 13, 15)
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1-10.

1-11.

1-12.

1-13.

1-14.

1-15.

1-16.

1-17.

1-18.

Simplify the following expressions in (1) sum-of-products form and (2)
product-of-sums form.

a. x'z' +y'z +y2' +xy

b. AC' + B'D + A'CD + ABCD

Simplify the following Boolean function in sum-of-products form by means
of a four-variable map. Draw the logic diagram with (a) AND-OR gates; (b)
NAND gates.

F(A,B,C,D)= 2 (0,28,9,10, 11, 14, 15)

Simplify the following Boolean function in product-of-sums form by means
of a four-variable map. Draw the logic diagram with (a) OR-AND gates; (b)
NOR gates.

F(w,x,y,2) = % (2,3,4,5,6,7,11, 14, 15)

Simplify the Boolean function F together with the don’t-care conditionsd in
(1) sum-of-products form and (2) product-of-sums form.

F(w,x,y,2) = % (0,1,2,3,7,8,10)
d(w,x,y,2) = % (5,6, 11, 15)

Using Table 1-2, derive the Boolean expression for the S (sum) output of the
full-adder in sum-of-products form. Then by algebraic manipulation show
that S can be expressed as the exclusive-OR of the three input variables.

S=x@ydz

A majority function is generated in a combinational circuit when the output
is equal to 1 if the input variables have more 1’s than 0’s. The output is 0
otherwise. Design a three-input majority function.

Design a combinational circuit with three inputs x, y, z and three outputs
A, B, C. When thebinary inputis 0, 1, 2, or 3, the binary output is one greater
than the input. When the binary input is 4 5, 6, or 7, the binary output is
one less than the input.

Show that a JK flip-flop can be converted to a D flip-flop with an inverter
between the | and K inputs.

Using the information from the characteristic table of the JK flip-flop listed
in Fig. 1-21(b), derive the excitation table for the JK flip-flop and compare
your answer with Table 1-3.

A sequential circuit has two D flip-flops A and B, two inputs x and y, and
one output 2. The flip-flop input equations and the circuit output are as
follows:

Da=x'y + xA
Ds =x'B +xA
2=B
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a. Draw the logic diagram of the crcust.

b. Tabulate the state table.

Design a 2-bit count-down counter. This is a sequential drcui with two
flip-flops and one input x. When t = 0, the state of the flip-fiops does not
change. When r = 1, the slate sequence is 11. 10, 01, 00. 11, ang repeat.
Design a sequential cirauit with two JK flip-ops A and B and twa inputs E
and r. If E = 0, the circuit remains in the same state regardless of thevatue
of x. When £ = 1 and x = 1, the cruit goes through the state trarsitons
fsom 00 to 01 4010 10 11 badk bo 00, and repeat. When E = 1and x = 0. the
circuit goes through Wie state ransitions from 00 to 11 to 10 to 01 baek ko 00,
and repeat.

[ B |
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2-1 Integrated Circuits

Digital circuits are constructed with integrated circvi%. An integrated circuit
{abbreviated IC) is a small silicon semiconductor ciystal, called a ch#p, contain-
ing the electronic components for the digital gates. The vadous gates are
interconnected inside the chip to form the required circwn't. Thechip ismounted
in a ceramic or plastic container, and connections are welded by thin gofd wires
80 external pins to form the integrated crcuit. The number of pins may range
from 14 in a small iC package to 100 or more in a larger package. Each IC has
a numeric designation printed on the susface of the package for identification.
Each vendor publishes a data book or catalog that contains the exact descrip-
tion and all the necessary information about the 1Cs that it manufactures.

As the technology of ICs has improved, the number of gates that can be
putin a single chip has increased considerably. The differentiation between
those chips that have a few intemnal gates and those having hundreds or
thousands of gates is made by a customary reference to a padcage as being
either a small-, medium-, or large-scale integration device.

Smli-scale mtegretion (SSY) devices contain several independent gates in
a single package. The inputs and outputs of the gates are connected dicecily
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to the pins in the package. The number of gates is usually less than 10 and is
limited by the number of pins available in the IC.

Medium-scale integration (MSI) devices have a complexity of approximately
10 to 200 gates in a single package. They usually perform specific elementary
digital functions such as decoders, adders, and registers.

Large-scale integration (LSI) devices contain between 200 and a few thou-
sand gates in a single package. They include digital systems, such as proces-
sors, memory chips, and programmable modules.

Very-large-scale integration (VLSI) devices contain thousands of gates
within a single package. Examples are large memory arrays and complex
microcomputer chips. Because of their small size and low cost, VLSI devices
have revolutionized the computer system design technology, giving designers
the capability to create structures that previously were not economical.

Digital integrated circuits are classified not only by their logic operation
but also by the specific circuit technology to which they belong. The circuit
technology is referred to as a digital logic family. Each logic family has its own
basic electronic circuit upon which more complex digital circuits and functions
are developed. The basic circuit in each technology is either a NAND, a NOR,
or an inverter gate. The electronic components that are employed in the
construction of the basic circuit are usually used for the name of the technol-
ogy. Many different logic families of integrated circuits have been introduced
commercially. The following are the most popular.

TTL Transistor-transistor logic

ECL Emitter-coupled logic

MOS Metal-oxide semiconductor

CMOS Complementary metal-oxide semiconductor

TTL is a widespread logic family that has been in operation for many
years and is considered as standard. ECL has an advantage in systems requir-
ing high-speed operation. MOS is suitable for circuits that need high compo-
nent density, and CMOS is preferable in systems requiring low power
consumption.

The transistor-transistor logic family was an evolution of a previous
technology that used diodes and transistors for the basic NAND gate. This
technology was called DTL, for “diode-transistor logic.” Later the diodes were
replaced by transistors to improve the circuit operation and the name of the
logic family was changed to “transistor-transistor logic.” This is the reason for
mentioning the word “transistor” twice. There are several variations of the TTL
family besides the standard TTL, such as high-speed TTL, low-power TTL,
Schottky TTL, low-power Schottky TTL, and advanced Schottky TTL. The
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power supply voltage for TTL circuits is 5 volts, and the two logic levels are
approximately 0 and 3.5 volts.

The emitter-coupled logic (ECL) family provides the highest-speed digital
circuits in integrated form. ECL is used in systems such as supercomputers and
signal processors where high speed is essential. The transistors in ECL gates
operate in a nonsaturated state, a condition that allows the achievement of
propagation delays of 1 to 2 nanoseconds.

The metal-oxide semiconductor (MOS) is a unipolar transistor that
depends on the flow of only one type of carrier, which may be electrons
(n-channel) or holes (p-channel). This is in contrast to the bipolar transistor
used in TTL and ECL gates, where both carriers exist during normal operation.
A p-channel MOS is referred to as PMOS and an n-channel as NMOS. NMOS
is the one that is commonly used in circuits with only one type of MOS
transistor. The complementary MOS (CMOS) technology uses PMOS and
NMOS transistors connected in a complementary fashion in all circuits. The
most important advantages of CMOS over bipolar are the high packing density
of circuits, a simpler processing technique during fabrication, and a more
economical operation because of low power consumption.

Because of their many advantages, integrated circuits are used exclu-
sively to provide various digital components needed in the design of computer
systems. To understand the organization and design of digital computers it is
very important to be familiar with the various components encountered in
integrated circuits. For this reason, the most basic components are introduced
in this chapter with an explanation of their logical properties. These compo-
nents provide a catalog of elementary digital functional units commonly used
as basic building blocks in the design of digital computers.

2-2 Decoders

Discrete quantities of information are represented in digital computers with
binary codes. A binary code of n bits is capable of representing up to 2" distinct
elements of the coded information. A decoder is a combinational circuit that
converts binary information from the n coded inputs to a maximum of 2*
unique outputs. If the n-bit coded information has unused bit combinations,
the decoder may have less than 2" outputs.

The decoders presented in this section are called n-to-m-line decoders,
wherem =< 2". Their purpose is to generate the 2" (or fewer) binary combina-
tions of the n input variables. A decoder has n inputs and m outputs and is also
referred to as an n X m decoder.

The logic diagram of a 3-to-8-line decoder is shown in Fig. 2-1. The three
data inputs, Ao, A;, and A, are decoded into eight outputs, each output
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Enable input

A DC = o
o
A >0
1 001
Ay - | D,
l[: 1 010
1 D,
1 011
] Dy
1 100
— D4
1 101
—1 Ds
1 110
1 D6
1 111
| D,
Enable (E)

Figure 2-1 3-to-8-line decoder.

representing one of the combinations of the three binary input variables. The
three inverters provide the complement of the inputs, and each of the eight
AND gates generates one of the binary combination. A particular application
of this decoder is a binary-to-octal conversion. The input variables represent
a binary number and the outputs represent the eight digits of the octal number
system. However, a 3-to-8-line decoder can be used for decoding any 3-bit code
to provide eight outputs, one for each combination of the binary code.
Commercial decodersinclude one or more enable inputs to control the
operation of the circuit. The decoder of Fig. 2-1 has one enable input, E. The
decoder is enabled when E is equal to 1 and disabled when E is equal to 0.
The operation of the decoder can be clarified using the truth table listed
in Table 2-1. When the enable input E is equal to 0, all the outputs are equal
to 0 regardless of the values of the other three data inputs. The three x’s in
the table designate don't-care conditions. When the enable input is equal to
1, the decoder operates in a normal fashion. For each possible input combina-
tion, there are seven outputs that are equal to 0 and only one that is equal to
1. The output variable whose value is equal to 1 represents the octal number
equivalent of the binary number that is available in the input data lines.
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TABLE 2-1 Truth Table for 3-to-8-Line Decoder
Enable Inputs Outputs
E A2 A A D; D¢ Ds Ds Dis D D Do
0 X x x 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 1] 0 0 1 0 0
1 0 1 1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0

NAND Gate Decoder

Some decoders are constructed with NAND instead of AND gates. Since a
NAND gate produces the AND operation with an inverted output, it becomes
more economical to generate the decoder outputs in their complement form.
A 2-to-4-line decoder with an enable input constructed with NAND gates is
shown in Fig. 2-2. The circuit operates with complemented outputs and a
complemented enable input E. The decoder is enabled when E is equal to 0.
Asindicated by the truth table, only one output is equal to 0 atany given time;
the other three outputs are equal to 1. The output whose value is equal to 0
represents the equivalent binary number in inputs A4, and A,. The circuit is
disabled when E is equal to 1, regardless of the values of the other two inputs.

Ao

A

Figure 2-2  2-to-4-line decoder with NAND gates.

o= Yoo
>0

(a) Logic diagram

D,

-
— D,

Da

E A Ay |Dy Dy Dy D4

0o o0 o000 1 1 1

0O 0 11 0 1 1

o 1 ofr 1 o0 I

0 1 1 1 1 1 0

1 x x |1 1 1 1
(b) Truth table
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When the circuit is disabled, none of the outputs are selected and all outputs
are equal to 1. In general, a decoder may operate with complemented or
uncomplemented outputs. The enable input may be activated with a 0 or with
a 1 signal level. Some decoders have two or more enable inputs that must
satisfy a given logic condition in order to enable the circuit.

Decoder Expansion
There are occasions when a certain-size decoder is needed but only smaller
sizes are available. When this occurs it is possible to combine two or more
decoders with enable inputs to form a larger decoder. Thus if a 6-to-64-line
decoder is needed, it is possible to construct it with four 4-to-16-line decoders.
Figure 2-3 shows how decoders with enable inputs can be connected to
form a larger decoder. Two 2-to-4-line decoders are combined to achieve a
3-to-8-line decoder. The two least significant bits of the input are connected to
both decoders. The most significant bit is connected to the enable input of one
decoder and through an inverter to the enable input of the other decoder. It
is assumed that each decoder is enabled when its E input is equal to 1. When
Eis equal to 0, the decoder is disabled and all its outputs are in the 0 level. When
A, = 0, the upper decoder is enabled and the lower is disabled. The lower
decoder outputs become inactive with all outputs at 0. The outputs of the upper
decoder generate outputs D, through D;, depending on the values of A; and
A, (while A; = 0). When A, = 1, the lower decoder is enabled and the upper
is disabled. The lower decoder output generates the binary equivalent D,
through D; since these binary numbers have a 1 in the A, position.

Figure 2-3 A 3 X 8 decoder constructed with two 2 X 4 decoders.

2x4
decoder Do
Ao 20 — D,
A 2! — D,
Az — E — D;
2x4
decoder [ Ds
— 20 — Ds
2 — Ds
E — b,
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The example demonstrates the usefulness of the enable input in decoders
or any other combinational logic component. Enable inputs are a convenient
feature for interconnecting two or more circuits for the purpose of expand-
ing the digital component into a similar function but with more inputs and
outputs.

Encoders

An encoder is a digital circuit that performs the inverse operation of a decoder.
An encoder has 2" (or less) input lines and n output lines. The output lines
generate the binary code corresponding to the input value. An example of an
encoder is the octal-to-binary encoder, whose truth table is given in Table 2-2.
It has eight inputs, one for each of the octal digits, and three outputs that
generate the corresponding binary number. It is assumed that only one input
has a value of 1 at any given time; otherwise, the circuit has no meaning.

TABLE 2-2 Truth Table for Octal-to-Binary Encoder

Inputs Outputs
D, Ds Ds D, D, D, Dy Do Az A Ao
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 il 0
1 0 0 0 0 0 0 0 1 1 1

The encoder can be implemented with OR gates whose inputs are deter-
mined directly from the truth table. Output A, = 1 if the input octal digit is 1
or 3 or 5 or 7. Similar conditions apply for the other two outputs. These
conditions can be expressed by the following Boolean functions:

Ay=D,+D; +Ds + D,
Ay =D, + D; + Ds + D,
A, =D;+ Ds + Ds + D,

The encoder can be implemented with three OR gates.
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multiplexer

2-3 Multiplexers

A multiplexer is a combinational circuit that receives binary information from
one of 2" input data lines and directs it to a single output line. The selec-
tion of a particular input data line for the output is determined by a set of
selection inputs. A 2"-to-1 multiplexer has 2" input data lines and n input
selection lines whose bit combinations determine which input data are selected
for the output.

A 4-to-1-line multiplexer is shown in Fig. 2-4. Each of the four data inputs
I through 1 is applied to one input of an AND gate. The two selection inputs
S;and S are decoded to select a particular AND gate. The outputs of the AND
gates are applied to a single OR gate to provide the single output. To demon-
strate the circuit operation, consider the case when S,S, = 10. The AND gate
associated with input I has two of its inputs equal to 1. The third input of the
gate is connected to I,. The other three AND gates have at least one input equal
to 0, which makes their outputs equal to 0. The OR gate output is now equal
to the value of I, thus providing a path from the selected input to the output.

The 4-to-1 line multiplexer of Fig. 2-4 has six inputs and one output. A
truth table describing the circuit needs 64 rows since six input variables can
have 2° binary combinations. This is an excessively long table and will not be
shown here. A more convenient way to describe the operation of multiplexers
is by means of a function table. The function table for the multiplexer is shown
in Table 2-3. The table demonstrates the relationship between the four data
inputs and the single output as a function of the selection inputs S, and S,.

Figure 2-4  4-to-1-line multiplexer.
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When the selection inputs are equal to 00, output Y is equal to input I,, When
the selection inputs are equal to 01, input I, has a path to output Y, and similarly
for the other two combinations. The multiplexer is also called a data selector,
since it selects one of many data inputs and steers the binary information to
the output.

TABLE 2-3 Function Table for 4-to-1-Line Multiplexer

Select Output

S So Y
0 0 I
0 1 I
1 0 I
1 1 I

The AND gates and inverters in the multiplexer resemble a decoder
circuit, and indeed they decode the input selection lines. In general, a 2"-to-1-
line multiplexer is constructed from an n-to-2" decoder by adding to it 2" input
lines, one from each data input. The size of the multiplexer is specified by the
number 2" of its data inputs and the single output. It is then implied that it also
contains n input selection lines. The multiplexer is often abbreviated as MUX.

As in decoders, multiplexers may have an enable input to control the
operation of the unit. When the enable input is in the inactive state, the outputs
are disabled, and when it is in the active state, the circuit functions as a normal
multiplexer. The enable input is useful for expanding two or more multiplexers
to a multiplexer with a larger number of inputs.

In some cases two or more multiplexers are enclosed within a single
integrated circuit package. The selection and the enable inputs in multiple-unit
construction are usually common to all multiplexers. As an illustration, the
block diagram of a quadruple 2-to-1-line multiplexer is shown in Fig. 2-5. The
circuit has four multiplexers, each capable of selecting one of two input lines.
Output Y, can be selected to come from either input A, or B,. Similarly, output
Y, may have the value of A, or B;, and so on. One input selection line S selects
one of the lines in each of the four multiplexers. The enable input E must be
active for normal operation. Although the circuit contains four multiplexers,
we can also think of it as a circuit that selects one of two 4-bit data lines. As
shown in the function table, the unit is enabled when E = 1. Then, if S = 0,
the four A inputs have a path to the four outputs. On the other hand, if S = 1,
the four B inputs are applied to the outputs. The outputs have all 0’s when
E = 0, regardless of the values of S.
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register load

Enable ———— E

Select ———— §
Ay — — Y, E S Y
Ay — Quzadn;ple —r 0 X AllO's

x
Ay — multiplexers — T 1 0 A
Ay — R Lo B
By —]
° (b) Function table
By —]
By ——
B; —
(a) Block diagram

Figure 2-5 Quadruple 2-to-1 line multiplexers.

2-4 Registers

A register is a group of flip-flops with each flip-flop capable of storing one bit
of information. An n-bit register has a group of n flip-flops and is capable of
storing any binary information of n bits. In addition to the flip-flops, a register
may have combinational gates that perform certain data-processing tasks. In
its broadest definition, a register consists of a group of flip-flops and gates that
effect their transition. The flip-flops hold the binary information and the gates
control when and how new information is transferred into the register.

Various types of registers are available commercially. The simplest regis-
ter is one that consists only of flip-flops, with no external gates. Figure 2-6
shows such a register constructed with four D flip-flops. The common clock
input triggers all flip-flops on the rising edge of each pulse, and the binary data
available at the four inputs are transferred into the 4-bit register. The four
outputs can be sampled at any time to obtain the binary information stored in
the register. The clear input goes to a special terminal in each flip-flop. When
this input goes to 0, all flip-flops are reset asynchronously. The clear input is
useful for clearing the register to all 0’s prior to its clocked operation. The clear
input must be maintained at logic 1 during normal clocked operation. Note that
the clock signal enables the D input but that the clear-input is independent of
the clock.

The transfer of new information into a register is referred to as loading the
register. If all the bits of the register are loaded simultaneously with a common
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fo ———D ] Ap
Clock > C

1, D Q | A,

1] D o 4

I D o 4

Clear

Figure 2-6 4-bit register.

clock pulse transition, we say that the loading is done in parallel. A clock
transition applied to the C inputs of the register of Fig. 2-6 will load all four
inputs I through I;in parallel. In this configuration, the clock must be inhibited
from the circuit if the content of the register must be left unchanged.

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous
train of clock pulses. The clock pulses are applied to all flip-flops and registers
in the system. The master clock acts like a pump that supplies a constant beat
to all parts of the system. A separate control signal must be used to decide
which specific clock pulse will have an effect on a particular register.

A 4-bit register with a load control input that is directed through gates
and into the D inputs is shown in Fig. 2-7. The C inputs receive clock pulses

at all times. The buffer gate in the clock inwgmﬁgﬁgmﬁgﬂuirement
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With each clock pulse, the Dinputdetermines the next state of the output. To
leave the output unchanged, it is necessary to make the D input equal to the
present value of the output.

Note that the clock pulses are applied to the C inputs at all times. The load
input determines whether the next pulse will accept new information or leave
the information in the register intact. The transfer of information from the
inputs into the register is done simultaneously with all four bits during a single
pulse transition.

2-5 Shift Registers

A register capable of shifting its binary information in one or both directions
is called a shift register. The logical configuration of a shift register consists of
a chain of flip-flops in cascade, with the output of one flip-flop connected to
the input of the next flip-flop. All flip-flops receive common clock pulses that
initiate the shift from one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as
shown in Fig. 2-8. The output of a given flip-flop is connected to the D input
of the flip-flop at its right. The clock is common to all flip-flops. The serial input
determines what goes into the leftmost position during the shift. The serial
output is taken from the output of the rightmost flip-flop.

Sometimes it is necessary to control the shift so that it occurs with certain
clock pulses but not with others. This can be done by inhibiting the clock from
the input of the register if we do not want it to shift. When the shift register
of Fig 2-8 is used, the shift can be controlled by connecting the clock to the input
of an AND gate, and a second input of the AND gate can then control the shift
by inhibiting the clock. However, it is also possible to provide extra circuits to
control the shift operation through the D inputs of the flip-flops rather than
the clock input.

Bidirectional Shift Register with Parallel Load

A register capable of shifting in one direction only is called a unidirectional shift
register. A register that can shift in both directions s called a bidirectional shift
register. Some shift registers provide the necessary input and output terminals

Figure 2-8 4-bit shift register.

Serial . Serial

input b Q b Q b Q b Q output
X >c bc pc

Clock
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for parallel transfer. The most general shift register has all the capabilities listed
below. Others may have some of these capabilities, with at least one shift
operation.

1. An input for clock pulses to synchronize all operations.

2. A shift-right operation and a serial input line associated with the shift-
right.

3. Ashift-left operationand aserial input lineassociated with the shift-left.

4. A parallel load operation and #n input lines associated with the parallel
transfer.

5. n parallel output lines.

6. A control state that leaves the information in the register unchanged
even though clock pulses are applied continuously.

A 4-bit bidirectional shift register with parallel load is shown in Fig. 2-9.
Each stage consists of a D flip-flop and a 4 X 1 multiplexer. The two selection
inputs S; and S, select one of the multiplexer data inputs for the D flip-flop.
The selection lines control the mode of operation of the register according to
the function table shown in Table 2-4. When the mode control S,S, = 00, data
input 0 of each multiplexer is selected. This condition forms a path from the
output of each flip-flop into the input of the same flip-flop. The next clock
transition transfers into each flip-flop the binary value it held previously, and
no change of state occurs. When 5,5, = 01, the terminal marked 1 in each
multiplexer has a path to the D input of the corresponding flip-flop. This causes
a shift-right operation, with the serial input data transferred into flip-flop A,
and the content of each flip-flop A; -, transferred into flip-flop A; fori =1, 2,
3. When 5,5, = 10 ashift-leftoperation results, with the other serial input data
going into flip-flop A; and the content of flip-flop A; . ; transferred into flip-flop
A; for i =0, 1, 2. When 5,5, = 11, the binary information from each input
I, through L is transferred into the corresponding flip-flop, resulting in a
parallel load operation. Note that the way the diagram is drawn, the shift-right
operation shifts the contents of the register in the down direction while the
shift left operation causes the contents of the register to shift in the upward
direction.

TABLE 2-4 Function Table for Register of Fig. 2-9

Mode control

S So Register operation

No change

Shift right (down)
Shift left (up)
Parallel load

——-0 O
—_o o

www.EasyEngineering.net


http://easyengineering.net
http://easyengineering.net

www.EasyEngineering.n
asyEngineering e}sm‘ _ P

So
A

Serial input

1o

Ay

Figure 2-9 Bidirectional shift register with paralle! load.

Shift registers are often used to interface digital systemns situaied remotely
from each other. For example, suppose that it is necessary 80 tansmit an n-bit
quantity between two ponts. If the distance between the source and the
destination is too far, it will be expensive to use n lines o transmut the n bits
in pasallel. It may be more ewnamica! to use a single line and transmit the
ofurmation serially one bit at a time. The Gransmirter lnads the nbi't data in
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parallel into a shift register and then transmits the data from the serial output
line. The receiver accepts the data serially into a shift register through its serial
input line. When the entire n bits are accumulated they can be taken from the
outputs of the register in parallel. Thus the transmitter performs a parallel-to-
serial conversion of data and the receiver converts the incoming serial data back
to parallel data transfer.

2-6 Binary Counters

A register that goes through a predetermined sequence of states upon the
application of input pulses is called a counter. The input pulses may be clock
pulses or may originate from an external source. They may occur at uniform
intervals of time or at random. Counters are found in almost all equipment
containing digital logic. They are used for counting the number of occurrences
of an event and are useful for generating timing signals to control the sequence
of operations in digital computers.

Of the various sequences a counter may follow, the straight binary se-
quence is the simplest and most straightforward. A counter that follows the
binary number sequence is called a binary counter. An n-bit binary counter is
a register of n flip-flops and associated gates that follows a sequence of states
according to the binary count of n bits, from 0 to 2" — 1. The design of binary
counters can be carried out by the procedure outlined in Sec. 1-7 for sequential
circuits. A simpler alternative design procedure may be carried out from a
direct inspection of the sequence of states that the register must undergo to
achieve a straight binary count.

Going through a sequence of binary numbers such as 0000, 0001, 0010,
0011, and so on, we note that the lower-order bit is complemented after every
count and every other bit is complemented from one count to the next if and
only if all its lower-order bits are equal to 1. For example, the binary count from
0111 (7) to 1000 (8) is obtained by (a) complementing the low-order bit, (b)
complementing the second-order bit because the first bit of 0111 is 1, (c)
complementing the third-order bit because the first two bits of 0111 are 1’s, and
(d) complementing the fourth-order bit because the first three bits of 0111 are
all ’s.

A counter circuit will usually employ flip-flops with complementing
capabilities. Both T and JK flip-flops have this property. Remember that a JK
flip-flop is complemented if both its ] and K inputs are 1 and the clock goes
through a positive transition. The output of the flip-flop does not change if
] = K = 0. In addition, the counter may be controlled with an enable input that
turns the counter on or off without removing the clock signal from the flip-
flops.

P Synchronous binary counters have a regular pattern, as can be seen from
the4-bitbinary counter shown in Fig. 2-10. The C inputs of all flip-flops receive
the common clock. If the count enable is 0, all ] and K inputs are maintained
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J Q Ao
—> C
Count enable ' K
J Q Ay
—> C
K
J Q Ay
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K
J Q A
—> C
K
Output
carry
Clock

Figure 2-10 4-bit synchronous binary counter.

at 0 and the output of the counter does not change. The first stage A, is
complemented when the counter is enabled and the clock goes through a
positive transition. Each of the other three flip-flops are complemented when
all previous least significant flip-flops are equal to 1 and the count is enabled.
The chain of AND gates generate therequiredlogicfor the ] and K inputs. The
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increment

word

output carry can be used to extend the counter to more stages, with each stage
having an additional flip-flop and an AND gate.

Binary Counter with Parallel Load
Counters employed in digital systems quite often require a parallel load capa-
bility for transferring an initial binary number prior to the count operation.
Figure 2-11 shows thelogicdiagram of a binary counter that has a parallel load
capability and can also be cleared to 0 synchronous with the clock. When equal
to 1, the clear input sets all the K inputs to 1, thus clearing all flip-flops with
the next clock transition. The input load control when equal to 1, disables the
count operation and causes a transfer of data from the four parallel inputs into
the four flip-flops (provided that the clear input is 0). If the clear and load inputs
are both 0 and the increment input is 1, the circuit operates as a binary counter.
The operation of the circuit is summarized in Table 2-5. With the clear,
load, and increment inputs all at 0, the outputs do not change even when
pulses are applied to the C terminals. If the clear and load inputs are main-
tained at logic 0, the increment input controls the operation of the counter and
the outputs change to the next binary count for each positive transition of the
clock. The input data are loaded into the flip-flops when the load control input
is equal to 1 provided that the clear is disabled, but the increment input can
be 0 or 1. The register is cleared to 0 with the clear control regardless of the
values in the load and increment inputs.

TABLE 2-5 Function Table for the Register of Fig. 2-11

Clock Clear Load Increment Operation
1 1] 0 0 No change
1 0 0 1 Increment count by 1
1 0 1 x Load inputs Io through I;
1 1 X X Clear outputs to 0

Counters with parallel load are very useful in the design of digital com-
puters. In subsequent chapters we refer to them as registers with load and
increment operations. The increment operation adds one to the content of a
register. By enabling the count input during one clock period, the content of
the register can be incremented by one.

2-7 Memory Unit

A memory unit is a collection of storage cells together with associated circuits
needed to transfer information in and out of storage. The memory stores binary
information in groups of bits called words. A word in memory is an entity of
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Figure 2-11  4-bit binary counter with parallel load and synchronous clear.
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byte

write and
read operations

bits that move in and out of storage as a unit. A memory word is a group of
1’s and 0’s and may represent a number, an instruction code, one or more
alphanumeric characters, or any other binary-coded information. A group of
eight bits is called a byte. Most computer memories use words whose number
of bits is a multiple of 8. Thus a 16-bit word contains two bytes, and a 32-bit
word is made up of four bytes. The capacity of memories in commercial
computers is usually stated as the total number of bytes that can be stored.

The internal structure of a memory unit is specified by the number of
words it contains and the number of bitsin each word. Specialinputlines called
address lines select one particular word. Each word in memory is assigned an
identification number, called an address, starting from 0 and continuing with
1,2, 3, up to 2* — 1 where k is the number of address lines. The selection of
a specific word inside the memory is done by applying the k-bit binary address
to the address lines. A decoder inside the memory accepts this address and
opens the paths needed to select the bits of the specified word. Computer
memories may range from 1024 words, requiring an address of 10 bits, to 2%
words, requiring 32 address bits. It is customary to refer to the number of words
(or bytes) in a memory with one of the letters K (kilo), M (mega), or G (giga).
Kis equal to2'°, Mis equal to 2%, and G is equal to 2%. Thus 64K = 2'6,2M = 22,
and 4G = 2%,

Two major types of memories are used in computer systems: random-
access memory (RAM) and read-only memory (ROM).

Random-Access Memory

In random-access memory (RAM) the memory cells can be accessed for infor-
mation transfer from any desired random location. That is, the process of
locating a word in memory is the same and requires an equal amount of time
no matter where the cells are located physically in memory: thus the name
“random access.”

Communication between a memory and its environment is achieved
through data input and output lines, address selection lines, and control lines
that specify the direction of transfer. A block diagram of a RAM unit is shown
in Fig. 2-12. The n data input lines provide the information to be stored in
memory, and the n data output lines supply the information coming out of
memory. The k address lines provide a binary number of k bits that specify a
particular word chosen among the 2* available inside the memory. The two
control inputs specify the direction of transfer desired.

The two operations that a random-access memory can perform are the
write and read operations. The write signal specifies a transfer-in operation
and the read signal specifies a transfer-out operation. On accepting one of
these control signals, the internal circuits inside the memory provide the
desired function. The steps that must be taken for the purpose of transferring
a new word to be stored into memory are as follows:

1. Apply the binary address of the desired word into the address lines.
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n data input lines

k address lines ———~{ Memory unit

Read 2k words
n bits per word

Write —>

n data output lines

Figure 2-12  Block diagram of random access memory (RAM).

2. Apply the data bits that must be stored in memory into the data input
lines.

3. Activate the write input.

The memory unit will then take the bits presently available in the input data
lines and store them in the word specified by the address lines.

The steps that must be taken for the purpose of transferring a stored word
out of memory are as follows:

1. Apply the binary address of the desired word into the address lines.
2. Activate the read input.

The memory unit will then take the bits from the word that has been selected
by the address and apply them into the output data lines. The content of the
selected word does not change after reading.

Read-Only Memory

As the name implies, a read-only memory (ROM) is a memory unit that
performs the read operation only; it does not have a write capability. This
implies that the binary information stored in a ROM is made permanent during
the hardware production of the unit and cannot be altered by writing different
words into it. Whereas a RAM is a general-purpose device whose contents can
be altered during the computational process, a ROM is restricted to reading
words that are permanently stored within the unit. The binary information to
be stored, specified by the designer, is then embedded in the unit to form the
required interconnection pattern. ROMs come with special internal electronic
fuses that can be “programmed”’ for a specific configuration. Once the pattern
is established, it stays within the unit even when power is turned off and on
again.
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k address input lines

l

m x nROM
(m=2)

n data output lines

Figure 2-13 Block diagram of read only memory (ROM).

An m X n ROM is an array of binary cells organized into m words of n
bits each. As shown in the block diagram of Fig. 2-13, a ROM has k address
input lines to select one of 2¢ = m words of memory, and n output lines, one
for each bit of the word. An integrated circuit ROM may also have one or more
enable inputs for expanding a number of packages into a ROM with larger
capacity.

The ROM does not need a read-control line since at any given time, the
output lines automatically provide the n bits of the word selected by the
address value. Because the outputs are a function of only the present inputs
(the address lines), a ROM is classified as acombinationalcircuit. In fact, a ROM
is constructed internally with decoders and a set of OR gates. There is no need
for providing storage capabilities as in a RAM, since the values of the bits in
the ROM are permanently fixed.

ROM s find a wide range of applications in the design of digital systems.
Basically, a ROM generates an input—output relation specified by a truth table.
As such, it canimplement any combinational circuit with kinputs and n outputs.
When employed in a computer system as a memory unit, the ROM is used for
storing fixed programs that are not to be altered and for tables of constants that
are not subject to change. ROM is also employed in the design of control units
for digital computers. As such, they are used to store coded information that
represents the sequence of internal control variables needed for enabling the
various operations in the computer. A control unit that utilizes a ROM to store
binary control information is called a microprogrammed control unit. This
subject is dicsussed in more detail in Chapter 7.

Types of ROMs

The required paths in a ROM may be programmed in three different ways. The
first, mask programming, is done by the semiconductor company during the last
fabrication process of the unit. The procedure for fabricating a ROM requires
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that the customer £} out the truth table that he or she wishes the ROM to
satisfy. The truth table may be submitted in a specid) form provided by the
manufacturer or in a specified format on a computer output medium. The
manufacturer makes the coresponding mask for the paths %o produce the 1's
and 0’s according to the customer’s truth table. This procedure is costly because
the vendor chargesthe castomera special fee for custom masking the particular
ROM. For thisreason, mask programming is economical only if a jarge quantity
of the same RCM configuration is to be ordered.

For small quantities it is mare econamical to use a second type of ROM
called a progranmable read-ondy memory or PROM. When ordered, PROM unite
contain all the fuses intact, givingall 1's in the bits of the stared words. The
fuses in the PROM are blown by application of awrent pulses uzough the
output teeminals for each address. A blown fuse defines a binary 0 state, and
an intact fuse gives a binary 1 state. This allows users to progrtam PROMs in
their own laboratories to achieve the desired relationship between input ad-
dresses and stored words. Spedal instruments called PROM grogTommers are
available commerdially to fac litate this procedure. Inany case, all procedures
for progtamming ROMs are hardware procedures even though the wurd
“programming’’ is used.

The hardware procedure for programming ROMs or PROMs is irre-
versible, and once programmed, the fixed pattetn is permanent and cannotbe
altezed. Once a bit pattern has been established, the unit must be discarded
if the bit pattern is to bechanged. A third type of ROM available is called erasable
PROM or EPROM. The EPROM can be restructured to the initial value even
though its fuses have been blown previously. When the EPROM is placed
under a spedial ultraviolet light for a given period of time, the shortwave
radiation discharges the internal gates that serve as fuses. After erasuge, the
EPROM returns to its initial state and can be reprograouned to a new set of
words. Certain PROMs can be erased with electrica) signals instead of ultravi-
olet light. These PROMs are called electricolly erasabie PROM or EEPROM.

——— PROBLEMS i —

21, 1TL SS[ come mostly in 14-pin KC packages. Two pins are rexerved for power
supply and the othwr pins are used for input and output @minale How
many cirevite are included in one such package if it contains the
type of circuits? (a) Inverters; {(b) two-input exdusive-OR gates; (¢} hree-in-
put OR gases; {d} fow-input AND gates; (e} five-input NOR gates; (£} eight-
input NAND gates; (g} docked JK flip-flops with asynd\vronas dear.

22, MSI chips perform elementacy digital functions such as dewuders, multiphex-
ers, registers, and couwnters. The following are TTL-type integrated dircuits
that provide such functipns. Fmd their description in a data book and
compare them with the ax tp fed in this chapter.

¥ o¢ 15
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2-6.

2-7.

2-10.

2-11.

2-12.

2-13.

2-14.

2-15.

2-16.

. IC type 74155 dual 2-to-4-line decoders.

. IC type 74157 quadruple 2-to-1-line multiplexers.

. IC type 74194 4-bit bidirectional shift register with parallel load.

. IC type 74163 4-bit binary counter with parallel load and synchronous
clear.

An T

Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable
and one 2-to-4-line decoder. Use block diagrams similar to Fig. 2-3.

Draw the logic diagram of a 2-to-4-line decoder with only NOR gates.
Include an enable input.

Modify the decoder of Fig. 2-2 so that the circuitis enabled when E = 1 and
disabled when E = 0. List the modified truth table.

Draw the logic diagram of an eight-input, three-output encoder whose truth
table is given in Table 2-2. What is the output when all the inputs are equal
to 07 What is the output when only input D; is equal to 0? Establish a
procedure that will distinguish between these two cases.

Construct a 16-to-1-line multiplexer with two 8-to-1-line multiplexers and
one 2-to-1-line multiplexer. Use block diagrams for the three multiplexers.
Draw the block diagram of a dual 4-to-1-line multiplexers and explain its
operation by means of a function table.

Include a two-input AND gate with the register of Fig. 2-6 and connect the
gate output to the clock inputs of all the flip-flops. One input of the AND
gate receives the clock pulses from the clock pulse generator. The other input
of the AND gate provides a parallel load control. Explain the operation of
the modified register.

What is the purpose of the buffer gate in the clock input of the register of
Fig. 2-77

Include a synchronous clear capability to the register with parallel load of
Fig. 2-7.

The content of a 4-bit register is initially 1101. The register is shifted six times
to the right with the serial input being 101101, What is the content of the
register after each shift?

What is the difference between serial and parallel transfer? Using a shift

register with parallel load, explain how to convertserial input data to parallel

output and parallel input data to serial output.

A ring counter is a shift register as in Fig. 2-8 with the serial output connected

to the serial input. Starting from an initial state of 1000, list the sequence of

states of the four flip-flops after each shift.

The 4-bit bidirectional shift register with parallel load shown in Fig. 2-9 is

enclosed within one IC package.

a. Draw a block diagram of the IC showing all inputs and outputs. Include
two pins for power supply.

b. Draw ablock diagram using two ICs to produce an 8-bit bidirectional shift
register with parallel load.

How many flip-flops will be complemented in a 10-bit binary counter to

reach the next count after (a) 1001100111; (b) 00111111117
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2-21.
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2-23.
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Show the connections between four 4-bit binary counters with parallel }oad
(Fig. 2-11) to produce a 16-bit binary counter with parallel load. Use a block
diagram for each 4-bit counter.

Show how the binary counter with parallel load of Fig. 2-11 can be made to
operate as a divide-by-N counter (i.e., a counter that counts from 0000 to
N-and back to 0000). Specifically show the circur't for a divide-by-10 counter
using the counter of Fig. 2-11 and an external AND gate.

The following memory units are specified by the number of words times the
number of bits per word. How many address lines and input—-output data
lines are needed in each case? (a) 2K x 16; (b) 64K x §; (c) 16M x 32;
(d) 4G x 64.

Specify the humber of bytes that can be stored in the memories listed in
Prob. 2-19. !

How many 128 x 8 memory chips are needed to provide a memory capacity
of 4096 x 167

Given a 32 X 8 ROM chip with an enable input, show the external connec-
tions necessary to construct a 128 X 8 ROM with four chips and a decoder.

A ROM chip of 4096 x 8bits has two enable inputs and operates from a 5-volt
power supply. How many pins are needed for the integrated circuit pack-
age? Draw a block diagram and label all input and output ferminals in the
ROM.
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3.1 Data Types

Binary information in digital computers is stored in memory or processor
registers. Registers contain either data or control information, Control informa-
ton is a bit or a group of bits used to specify the sequence of command signals
needed for manipulation of the data in other registers. Data are numbers and
other binary-coded information that are operated on to achieve required com-
putational results. In this chapter we present the most common types of data
found in digital computers and show how the vatious data types are repre-
sented in binary-coded form in computer segisters.

The data types found in the registers of digital computeis may be dassi-
fied as being one of the following categories; (1) numbers used in arithmetic
computations, (2)letters of the alphabet used in data processing, and (3) other
discrete symbols used for spedific purposes. All types of data, except binary
numbers, are represented in computer registers in binary coded form. Thisis
because registers are made up of flip-flops and flip-Aops are two-state devices
that can store only 1's and 0’s. The binary number systemis the mostnatural
system to use in a digital computer. But sometimes itis convenient to employ
diffevent number systems, especially the decimal number syssem, since it is
used by people to pefoam aritunetic computations.
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decimal

binary

octal
hexademical

conversion

Number Systems

A number system of base, or radix, r is a system that uses distinct symbols for
r digits. Numbers are represented by a string of digit symbols. To determine
the quantity that the number represents, it is necessary to multiply each digit
by an integer power of r and then form the sum of all weighted digits. For
example, the decimal number system in everyday use employs the radix 10
system. The 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The string of digits
7245 is interpreted to represent the quantity

7x10+2x10'+4 x10°+ 5 x 107!

that is, 7 hundreds, plus 2 tens, plus 4 units, plus 5 tenths. Every decimal
number can be similarly interpreted to find the quantity it represents.

The binary number system uses the radix 2. The two digit symbols used
are 0 and 1. Thestring of digits 101101 is interpreted to represent the quantity

1Xx25+0x22+1x2+1x22+0x2'+1x2°=45

To distinguish between different radix numbers, the digits will be enclosed in
parentheses and the radix of the number inserted as a subscript. For example,
to show the equality between decimal and binary forty-five we will write
(101101), = (45)s0.

Besides the decimal and binary number systems, the octal (radix 8) and
hexadecimal (radix 16) are important in digital computer work. The eight sym-
bols of the octal system are 0, 1, 2, 3, 4, 5, 6, and 7. The 16 symbols of the
hexadecimal system are 0, 1,2, 3,4,5,6,7,8,9, A, B,C,D, E, and F. The last
six symbols are, unfortunately, identical to the letters of the alphabet and can
cause confusion at times. However, this is the convention that has been
adopted. When used to represent hexadecimal digits, the symbols A, B, C, D,
E, F correspond to the decimal numbers 10, 11, 12, 13, 14, 15, respectively.

A number in radix r can be converted to the familiar decimal system by
forming the sum of the weighted digits. For example, octal 736.4 is converted
to decimal as follows:

(7364)y =7 x 8 +3 x 8 +6x 8 +4 x 87!
=7x64+3%x8+6x1+48=(478.5)0

The equivalent decimal number of hexadecimal F3 is obtained from the follow-
ing calculation:

(F3js=F x 16 + 3 =15 x 16 + 3 = (243)y

Conversion from decimal to its equivalent representation in the radix r system
is carried out by separating the number into its integer and fraction parts and
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converting each part separately. The conversion of a decimal integer into a base
r representation is done by successive divisions by r and accumulation of the
remainders. The conversion of a decimal fraction to radix r representation is
accomplished by successive multiplications by r and accumulation of the in-
teger digits so obtained. Figure 3-1 demonstrates these procedures.

The conversion of decimal 41.6875 into binary is done by first separating
the number into its integer part 41 and fraction part .6875. The integer part is
converted by dividing 41 by r = 2 to give an integer quotient of 20 and a
remainder of 1. The quotient is again divided by 2 to give a new quotient and
remainder. This process is repeated until the integer quotient becomes 0. The
coefficients of the binary number are obtained from the remainders with the
first remainder giving the low-order bit of the converted binary number.

The fraction part is converted by multiplying itby r = 2 to give an integer
and a fraction. The new fraction (without the integer) is multiplied again by 2
to give a new integer and a new fraction. This process is repeated until the
fraction part becomes zero or until the number of digits obtained gives the
required accuracy. The coefficients of the binary fraction are obtained from
the integer digits with the first integer computed being the digit to be placed
next to the binary point. Finally, the two parts are combined to give the total
required conversion.

Octal and Hexadecimal Numbers

The conversion from and to binary, octal, and hexadecimal representation
plays an important part in digital computers. Since 2° = 8 and 2* = 16, each
octal digit corresponds to three binary digits and each hexadecimal digit cor-
responds to four binary digits. The conversion from binary to octal is easily
accomplished by partitioning the binary number into groups of three bits each.
The corresponding octal digit is then assigned to each group of bits and the
string of digits so obtained gives the octal equivalent of the binary number.
Consider, for example, a 16-bit register. Physically, one may think of the

Figure 3-1 Conversion of decimal 41.6875 into binary.

Integer = 41 Fraction = 0.6875

41 0.6875
20 |1 2
10 |0 1.3750
510 x 2
21 0.7500
1]0 x 2
01 1.5000
x 2
1.0000

(41),0 =(101001), (0.6875),0 = (0.1011),

(41.6875),5 = (101001.1011),
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1 2 7 5 4 3 Octal
N p— S N N —
101011110110001 1 Binary

A F 6 3 Hexadecimal

Figure 3-2 Binary, octal, and hexadecimal conversion.

register as composed of 16 binary storage cells, with each cell capable of
holding eithera1ora 0. Suppose that the bit configuration stored in the register
is as shown in Fig. 3-2. Since a binary number consists of a string of 1's and
0's, the 16-bit register can be used to store any binary number from 0 to 2'¢ — 1.
For the particular example shown, the binary number stored in the register is
the equivalent of decimal 44899. Starting from the low-order bit, we partition
the register into groups of three bits each (the sixteenth bit remains in a group
by itself). Each group of three bits is assigned its octal equivalent and placed
on top of the register. The string of octal digits so obtained represents the octal
equivalent of the binary number.

Conversion from binary to hexadecimal is similar except that the bits are
divided into groups of four. The corresponding hexadecimal digit for each
group of four bits is written as shown below the register of Fig. 3-2. The string
of hexadecimal digits so obtained represents the hexadecimal equivalent of the
binary number. The corresponding octal digit for each group of three bits is
easily remembered after studying the first eight entries listed in Table 3-1. The
correspondence between a hexadecimal digit and its equivalent 4-bit code can
be found in the first 16 entries of Table 3-2.

TABLE 3-1 Binary-Coded Octal Numbers

Octal Binary-coded Decimal

number octal equivalent

0 000 0 T
1 001 1
2 010 2 Code
3 011 3 for one
4 100 4 octal
5 101 5 digit
6 110 6
7 m 7 l
10 001 000 8

11 001 001 9

12 001 010 10

24 010 100 20

62 110 010 50

143 001 100 011 %9

370 011 111 000 248
- t
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Table 3-1 lists a few octal numbers and their representation in registers
in binary-coded form. The binary code is obtained by the procedure explained
above. Each octal digit is assigned a 3-bit code as specified by the entries of the
first eight digits in the table. Similarly, Table 3-2 lists a few hexadecimal
numbers and their representation in registers in binary-coded form. Here the
binary code is obtained by assigning to each hexadecimal digit the 4-bit code
listed in the first 16 entries of the table.

Comparing the binary-coded octal and hexadecimal numbers with their
binary number equivalent we find that the bit combination in all three repre-
sentations is exactly the same. For example, decimal 99, when converted to
binary, becomes 1100011. The binary-coded octal equivalent of decimal 99 is
001 100 011 and the binary-coded hexadecimal of decimal 99 is 0110 0011. If
we neglect the leading zeros in these three binary representations, we find that
their bit combination is identical. This should be so because of the straightfor-
ward conversion that exists between binary numbers and octal or hexadecimal.
The point of all this is that a string of 1’s and 0’s stored in a register could
represent a binary number, but this same string of bits may be interpreted as
holding an octal number in binary-coded form (if we divide the bits in groups
of three) or as holding a hexadecimal number in binary-coded form (if we
divide the bits in groups of four).

TABLE 3-2 Binary-Coded Hexadecimal Numbers

Hexadecimal ~ Binary-coded Decimal
number hexadecimal equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
S 0101 S
6 0110 6 Code
7 0111 7 for one
8 1000 8 hexadecimal
9 1001 9 digit
A 1010 10
B 1011 1
C 1100 12
D 1101 13
E 1110 14
F 1111 15
14 0001 0100 20
32 0011 0010 50
63 0110 0011 99
F8 1111 1000 248
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binary code

BCD

The registers in a digital computer contain many bits. Specifying the
content of registers by their binary values will require a long string of binary
digits. It is more convenient to specify content of registers by their octal or
hexadecimal equivalent. The number of digits is reduced by one-third in the
octal designation and by one-fourth in the hexadecimal designation. For exam-
ple, the binary number 1111 1111 1111 has 12 digits. It can be expressed in
octals as 7777 (four digits) or in hexadecimal as FFF (three digits). Computer
manuals invariably choose either the octal or the hexadecimal designation for
specifying contents of registers.

Decimal Representation

The binary number system is the most natural system for a computer, but
people are accustomed to the decimal system. One way to solve this conflict
is to convert all input decimal numbers into binary numbers, let the computer
perform allarithmetic operations in binary and then convert the binary results
back to decimal for the human user to understand. However, it is also possible
for the computer to perform arithmetic operations directly with decimal num-
bers provided they are placed in registers in a coded form. Decimal numbers
enter the computer usually as binary-coded alphanumeric characters. These
codes, introduced later, may contain from six to eight bits for each decimal
digit. When decimal numbers are used for internal arithmetic computations,
they are converted to a binary code with four bits per digit.

A binary code is a group of n bits that assume up to 2" distinct combina-
tions of 1’s and 0’s with each combination representing one element of the set
that is being coded. For example, a set of four elements can be coded by a 2-bit
code with each element assigned one of the following bit combinations; 00, 01,
10, or 11. A set of eight elements requires a 3-bit code, a set of 16 elements
requires a 4-bit code, and so on. A binary code will have some unassigned bit
combinations if the number of elements in the set is not a multiple power of
2. The 10 decimal digits form such a set. A binary code that distinguishes
among 10 elements must contain at least four bits, but six combinations will
remain unassigned. Numerous different codes can be obtained by arranging
four bits in 10 distinct combinations. The bit assignment most commonly used
for the decimal digits is the straight binary assigninent listed in the first 10
entries of Table 3-3. This particular code is called binary-coded decimal and is
commonly referred to by its abbreviation BCD. Other decimal codes are some-
times used and a few of them are given in Sec. 3-5.

It is very important to understand the difference between the conversion
of decimal numbers into binary and the binary coding of decimal numbers. For
example, when converted to a binary number, the decimal number 99 is repre-
sented by the string of bits 1100011, but when represented in BCD, it becomes
1001 1001. The only difference between a decimal number represented by the
familiar digit symbols 0, 1, 2, . .., 9 and the BCD symbols 0001, 0010, ..., 1001
isin the symbols used to represent the digits—the number itself is exactly the

www.EasyEngineering.net


http://easyengineering.net
http://easyengineering.net

character

Ascl

www.EasyEngineering.net
YENg 9 SECTION 3.1 Data Types 73

TABLE 3-3 Binary-Coded Decimal (BCD) Numbers

Decimal Binary-coded decimal

number (BCD) number
0 0000
1 0001
2 0010
3 0011 Code
4 0100 for one
5 0101 decimal
6 0110 digit
7 0111
8 1000 J
9 1001
10 0001 0000
20 0010 0000
50 0101 0000
99 1001 1001
248 0010 0100 1000

same. A few decimal numbers and their representation in BCD are listed in
Table 3-3.

Alphanumeric Representation

Many applications of digital computers require the handling of data that
consist not only of numbers, but also of the letters of the alphabet and certain
special characters. An alphanumeric character set is a set of elements that includes
the 10 decimal digits, the 26 letters of the alphabet and a number of special
characters, suchas $, +, and =. Such a set contains between 32 and 64 elements
(if only uppercase letters are included) or between 64 and 128 (if both uppercase
and lowercase letters are included). In the first case, the binary code will require
six bits and in the second case, seven bits. The standard alphanumeric binary
code is the ASCII (American Standard Code for Information Interchange),
which uses seven bits to code 128 characters. The binary code for the uppercase
letters, the decimal digits, and a few special characters is listed in Table 3-4.
Note that the decimal digits in ASCII can be converted to BCD by removing
the three high-order bits, 011. A complete list of ASCII characters is provided
in Table 11-1.

Binary codes play an important part in digital computer operations. The
codes must be in binary because registers can only hold binary information.
One must realize that binary codes merely change the symbols, not the mean-
ing of the discrete elements they represent. The operations specified for digital
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TABLE 3-4 American Standard Code for Information Interchange (ASCII)

Binary Binary
Character code Character code

A 100 0001 0 011 0000
B 100 0010 1 011 0001
C 100 0011 2 011 0010
D 100 0100 3 011 0011
E 100 0101 4 011 0100
F 100 0110 5 011 0101
G 100 0111 6 011 0110
H 100 1000 7 011 0111
1 100 1001 8 011 1000
J 100 1010 9 011 1001
K 100 1011
L 100 1100
M 100 1101 space 010 0000
N 100 1110 3 010 1110
o 100 1111 ( 010 1000
P 101 0000 + 010 1011
Q 101 0001 $ 010 0100
R 101 0010 * 010 1010
S 101 0011 ) 010 1001
T 101 0100 - 010 1101
8) 101 0101 / 010 1111
\% 101 0110 s 010 1100
w 101 0111 = 011 1101
X 101 1000
Y 101 1001
z 101 1010

computers must take into consideration the meaning of the bits stored in
registers so that operations are performed on operands of the same type. In
inspecting the bits of a computer register at random, one is likely to find that
it represents some type of coded information rather than a binary number.

Binary codes can be formulated for any set of discrete elements such as
the musical notes and chess pieces and their positions on the chessboard.
Binary codes are also used to formulateinstructions that specify control infor-
mation for the computer. This chapter is concerned with data representation.
Instruction codes are discussed in Chap. 5.

3-2 Complements

Complements are used in digital computers for simplifying the subtraction
operation and for logical manipulation. There are two types of complements
for each base r system: the r’s complement and the (r — 1)’s complement.
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When the value of the base r is substituted in the name, the two types are
referred to as the 2’s and 1’s complement for binary numbers and the 10’s and
9’s complement for decimal numbers.

(r — 1)’s Complement
Given a number N in base r having n digits, the (r — 1)’'s complement of N is
defined as (** — 1) — N. For decimal numbersr = 10 andr — 1 = 9, so the 9’s
complement of N is (10" — 1) — N. Now, 10"represents a number that consists
of a single 1 followed by n 0’s. 10" — 1 is a number represented by n 9’s. For
example, with n = 4 we have 10* = 10000 and 10* — 1 = 9999. It follows that
the 9’s complement of a decimal number is obtained by subtracting each digit
from 9. For example, the 9’s complement of 546700 is 999999 — 546700 =
453299 and the 9’s complement of 12389 is 99999 — 12389 = 87610.

For binary numbers, r = 2andr — 1 = 1, sothe 1’s complement of N is
(2" = 1) — N. Again, 2" is represented by a binary number that consists of a 1
followed by n 0’s. 2" — 1is a binary number represented by n 1’s. For example,
with n = 4, we have 2* = (10000); and 2* — 1 = (1111),. Thus the 1’s comple-
ment of abinary number is obtained by subtracting each digit from 1. However,
the subtraction of a binary digit from 1 causes the bit to change from 0 to 1 or
from 1 to 0. Therefore, the 1's complement of a binary number is formed by
changing 1’s into 0’s and 0’s into 1’s. For example, the 1's complement of
1011001 is 0100110 and the 1’s complement of 0001111 is 1110000.

The (r — 1)’s complement of octal or hexadecimal numbers are obtained
by subtracting each digit from 7 or F (decimal 15) respectively.

(r’s) Complement

The r’s complement of an n-digit number N in base r is defined as r" — N for
N # 0and 0 for N = 0. Comparing with the ( — 1)’s complement, we note
that the r’s complement is obtained by adding 1 to the (r — 1)’s complement
since r" — N = [(r" — 1) = N] + 1. Thus the 10’s complement of the decimal
2389 is 7610 + 1 = 7611 and is obtained by adding 1 to the 9's complement
value. The 2’s complement of binary 101100 is 010011 + 1 = 010100 and is
obtained by adding 1 to the 1's complement value.

Since 10" is a number represented by a 1 followed by n 0’s, then 10" — N,
which is the 10’s complement of N, can be formed also be leaving all least
significant 0’s unchanged, subtracting the first nonzero least significant digit
from 10, and then subtracting all higher significant digits from 9. The 10’s
complement of 246700 is 753300 and is obtained by leaving the two zeros
unchanged, subtracting 7 from 10, and subtracting the other three digits from
9. Similarly, the 2’s complement can be formed by leaving all least significant
0’s and the first 1 unchanged, and then replacing 1's by 0’s and 0’s by 1’s in
all other higher significant bits. The 2’s complement of 1101100 is 0010100 and
is obtained by leaving the two low-order 0’s and the first 1 unchanged, and then
replacing 1’s by 0’s and 0’s by 1’s in the other four most significant bits.
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subtraction

end carry

In the definitions above it was assumed that the numbers do not have a
radix point. If the original number N contains a radix point, it should be
removed temporarily to form the r’s or (r — 1)'s complement. The radix point
is then restored to the complemented number in the same relative position. It
is also worth mentioning that the complement of the complement restores the
number to its original value. The r’s complement of N is r* — N. The comple-
ment of the complement is " — (r" — N) = N giving back the original number.

Subtraction of Unsigned Numbers
The direct method of subtraction taught in elementary schools uses the borrow
concept. In this method we borrow a 1 from a higher significant position when
the minuend digit is smaller than the corresponding subtrahend digit. This
seems to be easiest when people perform subtraction with paper and pencil.
When subtraction is implemented with digital hardware, this method is found
to be less efficient than the method that uses complements.

The subtraction of two n-digit unsignednumbers M — N(N # 0) in base
r can be done as follows:

1. Add the minuend M to the r’s complement of the subtrahend N. This
performs M + (r" = N)=M — N + r".

2. If M = N, thesum will produce an end carry r" which is discarded, and
what is left is the result M — N.

3. If M <N, the sum does not produce an end carry and is equal to
r" — (N — M), which is the r’s complement of (N — M). To obtain the
answer in a familiar form, take the r’s complement of the sum and place
a negative sign in front.

Consider, for example, the subtraction 72532 — 13250 = 59282. The 10’s com-
plement of 13250 is 86750. Therefore:

M= 72532

10’s complement of N = +86750
Sum = 159282

Discard end carry 10° = —100000

Answer = 59282

Now consider an example with M < N. The subtraction 13250 — 72532
produces negative 59282. Using the procedure with complements, we have

M= 13250
10’s complement of N = +27468
Sum = 40718
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There is no end carry

Answer is negative 59282 = 10’s complement of 40718

Since we are dealing with unsigned numbers, there is really no way to
get an unsigned result for the second example. When working with paper and
pendil, we recognize that the answer must be changed to a signed negative
number. When subtracting with complements, the negative answer is recog-
nized by the absence of the end carry and the complemented result.

Subtraction with complements is done with binary numbers in a similar
manner using the same procedure outlined above. Using the two binary
numbers X = 1010100 and Y = 1000011, we perform the subtraction X — Y
and Y — X using 2’s complements:

X = 1010100

2’s complement of Y = +0111101
Sum = 10010001

Discard end carry 2’ = —10000000
Answer: X — Y = 0010001

Y = 1000011
2’s complement of X = +0101100
Sum = 1101111

There is no end carry

Answer is negative 0010001 = 2’s complement of 1101111

3.3 Fixed-Point Representation

Positive integers, including zero, can be represented as unsigned numbers.
However, to represent negative integers, we need a notation for negative
values. In ordinary arithmetic, a negative number is indicated by a minus sign
and a positive number by a plus sign. Because of hardware limitations, com-
puters must represent everything with 1’s and 0’s, including the sign of a
number. As a consequence, it is customary to represent the sign with a bit
placed in the leftmost position of the number. The convention is to make the
sign bit equal to 0 for positive and to 1 for negative.

In addition to the sign, a number may have a binary (or decimal) point.
The position of the binary point is needed to represent fractions, integers, or
mixed integer—fraction numbers. The representation of the binary point in a
register is compl