COMPUTER ARCHITECTURE
& ORGANIZATION

(6CS4-04)

Unit-3

Central Processing Unit

-Dr. MonicaLamba

Central Processing Unit 1

CENTRAL PROCESSING UNIT

* Introduction

« General Register Organization
« Stack Organization

* Instruction Formats

* Addressing Modes

- Data Transfer and Manipulation
* Program Control

* Reduced Instruction Set Computer

Computer Organization ComputerArchitectures Lab

2 Introduction

Central Processing Unit
MAJOR COMPONENTS OF CPU

« Storage Components
Registers

Flags

« Execution (Processing) Components
Arithmetic Logic Unit(ALU)
Arithmetic calculations, Logical computations, Shifts/Rotates

* Transfer Components
Bus 2.3
g/%@fﬁi@fT l
» Control Components | Vo
Control Unit Regi'lzter ALU
7 7
& %X”% ;
Control Unit

ComputerArchitectures Lab

Computer Organization

Central Processing Unit 3

REGISTERS

« |n Basic Computer, thereis only one general purpose register,
the Accumulator (AC)

 |In modern CPUs, there are many general purposeregisters

« [tis advantageousto have many registers
— Transfer between registers within the processor are relatively fast
— Going “off the processor” to access memory is much slower

« How many registers will be the best ?

Computer Organization ComputerArchitectures Lab

Central Processing Unit

General Register Organization

BUS: A, B

Clock

l (7 lines)

R1

GENERAL REGISTER ORGANIZATION

Input

-

R2

R3

R4

=

R5

RRERRY

R6

R7

Load
(7 lines)

‘TTTTTTT *ll LA A A J

SELA{ 3

MUX

3x8
decoder

Tt

'—.'—'
SELD
OPR

lAbus

- f—
MUX <} sELB
il—

1lEluus

1211}

ALU

¥ Output

Computer Organization

ComputerArchitectures Lab

Central Processing Unit

5

Control

The control unit

3

Example: R1 <« R2+R3
[1] MUX A selector (SELA): BUS A« R2
[2] MUX B selector (SELB): BUS B < R3
[3] ALU operation selector (OPR): ALU to ADD
[4] Decoder destination selector (SELD): R1 < Out Bus

3

3

Directs the information flow through ALU by
- Selecting various Components in the system
- Selecting the Function of ALU

5

Control Word SELA

Encoding of register selection fields

OPERATION OF CONTROL UNIT

SELB SELD OPR

Binary

Code SELA SELB SELD
000 [nput Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 RS
110 R6 R6 R6
111 R7 R7 R7

Computer Organization

ComputerArchitectures Lab

Central Processing Unit

Control

6
ALU CONTROL

Encoding of ALU operations

OPR
Select Operation

Symbol

00000 TransferA
00001 IncrementA
00010 ADDA+B

00101 SubtractA-B

00110 DecrementA
01000 ANDAandB
01010 ORAandB
01100 XORAandB
01110 Complement
10000 Shiftright A

TSFA

ADD
SUB
DECA
AND
OR
XOR
A COMA
SHRA

NCA

Examples of ALU Microoperations

'Tulu <L IeTt &

SHLA

Symbolic Designation

Microoperation SELA SELEB SELD OPR Control Word

R1+<R2-R3 R2 R3 R1 sUB 010 011 001 00101
R4+ R4 vR5 R4 R5 R4 OR 100 101 100 01010
R6« R6+1 R6 - R6 INCA 110 000 110 00001
R7 « R1 R1 - R7 TSFA 001 000 111 00000
Qutput « R2 R2 - None TSFA 010 000 000 00000
Qutput < Input Input - None TSFA 000 000 000 00000
R4 «shl R4 R4 - R4 SHLA 100 000 100 11000
R5«0 R5 R5 R5 XOR 101 101 101 01100

Computer Organization

ComputerArchitectures Lab

Central Processing Unit 7 Stack Organization

REGISTER STACK ORGANIZATION

Stack
- Very useful feature for nested subroutines, nested interrupt services
- Also efficient for arithmetic expression evaluation
- Storage which can be accessed in LIFO
- Pointer: SP

- Only PUSH and POP operations are applicable
stack Address

Register Stack Flags 63
FULL | [EMPTY

Stack pointer 4
SP — C 3
6 bits B 2
A 1
Push, Pop operations 0
| DR |
/* Initially, SP = 0, EMPTY =1, FULL=0 */
PUSH POP
SP«SP+1 DR « M[SP]
M[SP] <« DR SP « SP -1
If (SP = 0) then (FULL « 1) If (SP =0) then (EMPTY «1)
EMPTY <0 FULL <0

Computer Organization ComputerArchitectures Lab

Central Processing Unit Stack Organization

MEMORY STACK ORGANIZATION

1000
i ‘ Program
Memory with Program, Data, PC > [instmﬂctions]
and Stack Segments
| Data

AR (operands)

SP > 3000
! ik
1 3907
3998
3999
4000
4001
- A portion of memory is used as a stack with a Stack grows
processor register as a stack pointer In this direction

-PUSH: SP « SP-1
M[SP] « DR
-POP: DR « M[SP]
SP <SP + 1

- Most computers do not provide hardware to check stack overflow (full
stack) or underflow (empty stack) - must be done in software

Computer Organization ComputerArchitectures Lab

Central Processing Unit 9 Stack Organization

REVERSE POLISH NOTATION

» Arithmetic Expressions: A+ B
A+ B Infix notation
+ AB Prefix or Polish notation
A B+ Postfix orreverse Polish notation

- The reverse Polish notation is very suitable for stack
manipulation

- Evaluation of Arithmetic Expressions

Any arithmetic expression can be expressed in parenthesis-free
Polish notation, including reverse Polish notation

(3*4)+(5*6) = 34*56*+

—-| 6
-l 4 -1 5 5 =1 30
— 3 -] 12 12 (12 | (12 | =42
4 5 6 +

Computer Organization ComputerArchitectures Lab

Central Processing Unit 10

PROCESSOR ORGANIZATION

* |n general, mostprocessors are organizedin one of 3 ways

— Single register (Accumulator) organization

» Basic Computer is a good example
» Accumulator is the only general purpose register

— General register organization
» Used by most modern computer processors

» Any of the registers can be used as the source or destination for
computer operations

— Stack organization
» All operations are done using the hardware stack

» For example, an OR instruction will pop the two top elements from the
stack, do a logical OR on them, and push the result on the stack

Computer Organization ComputerArchitectures Lab

Central Processing Unit 11 Instruction Format

INSTRUCTION FORMAT

* Instruction Fields

OP-code field - specifies the operation to be performed

Address field - designates memory address(es) or a processor register(s)

Mode field -determines how the address field is to be interpreted (to
get effective address or the operand)

* The number of address fields in the instruction format
depends on the internal organization of CPU

* The three most common CPU organizations:
Single accumulator organization:

ADD X /* AC « AC + M[X] */
General register organization:

ADD R1,R2,R3 *R1 <« R2 +R3 *

ADD R1,R2 *R1<«R1+R2 ¥

MOV R1, R2 *R1 « R2 *

ADD R1, X *R1 « R1 + M[X] */
Stack organization:

PUSH X /* TOS « M[X] */

ADD

Computer Organization ComputerArchitectures Lab

Central Processing Unit 12 Instruction Format

THREE, AND TWO-ADDRESS INSTRUCTIONS

* Three-Address Instructions

Program to evaluate X=(A+B)*(C+D):

ADD R1,A,B I* R1 « M[A] + M[B] *
ADD R2,C,D I* R2 « M[C] + M[D] *
MUL X, R1, R2 I* M[X] <~ R1 * R2 J.

- Results in short programs (Advantage)
- Instruction becomes long (many bits)

« Two-Address Instructions

Program to evaluate X=(A+B)*(C +D):

MOV R1,A I* R1 < M[A] *
ADD R1,B I*R1 « R1 + M[A] */
MOV R2,C I* R2 < M[C] J
ADD R2,D I*R2 < R2 + M[D] */
MUL R1, R2 FR1< R1*R2 ¥
MOV X, R1 I* M[X] < R1 |

Computer Organization ComputerArchitectures Lab

Central Processing Unit

13

Instruction Format

* One-Address Instructions

LOAD
ADD
STORE
LOAD
ADD
MUL
STORE

X-oOO-HmP

« Zero-Address Instructions

ONE, AND ZERO-ADDRESS INSTRUCTIONS

- Use an implied AC register for all data manipulation
- Program to evaluate X=(A+B)*(C +D):

I* AC « M[A]

I* AC « AC + M[B] */

I* M[T] « AC
I* AC < M[C]

I* AC < AC + M[D] */
I* AC < AC * M[T]

I* M[X] < AC

- Can be found in a stack-organized computer
- Program to evaluate X=(A+B)*(C +D):

PUSH A I* TOS <A
PUSH B I* TOS « B

ADD I[* TOS « (A + B)
PUSH C I* TOS « C
PUSH D I* TOS <« D

ADD [* TOS « (C+ D)
MUL I* TQS

Computer Organif2 QR X I* M[X] « TOS

*I

*I
*

*I
*I

i |
~f
& |
*
*
*
* + B} ud
*| ComputerArchitectures Lab

Central Processing Unit 14 AddressingModes

ADDRESSING MODES

* Addressing Modes

* Specifies a rule for interpreting or modifying the
address field of the instruction (before the operand
is actually referenced)

* Variety of addressing modes
- to give programming flexibility to the user

- to use the bits in the address field of the
instruction efficiently

Computer Organization ComputerArchitectures Lab

Central Processing Unit 15 Addressing Modes

TYPES OF ADDRESSING MODES

* Implied Mode
Address of the operands are specified implicitly
in the definition of the instruction
- No need to specify address in the instruction
-EA = AC, or EA = Stack[SP]
- Examples from Basic Computer
CLA, CME, INP

* Immediate Mode
Instead of specifying the address of the operand,
operand itself is specified
- No need to specify address in the instruction
- However, operand itself needs to be specified
- Sometimes, require more bits than the address
- Fast to acquire an operand

Computer Organization ComputerArchitectures Lab

Central Processing Unit 16 Addressing Modes

TYPES OF ADDRESSING MODES

* Register Mode
Address specified in the instruction is the register address
- Designated operand need to be in a register
- Shorter address than the memory address
- Saving address field in the instruction
- Faster to acquire an operand than the memory addressing
-EA =IR(R) (IR(R): Register field of IR)

- Register Indirect Mode

Instruction specifies a register which contains

the memory address of the operand

- Saving instruction bits since register address
is shorter than the memory address

- Slower to acquire an operand than both the
register addressing or memory addressing

- EA = [IR(R)] ([x]: Content of Xx)

* Autoincrement or Autodecrement Mode
- When the address in the register is used to access memory, the
value in the register is incremented or decremented by 1
automatically

Computer Organization ComputerArchitectures Lab

Central Processing Unit 17 Addressing Modes

TYPES OF ADDRESSING MODES

* Direct Address Mode
Instruction specifies the memory address which
can be used directly to access the memory
- Faster than the other memory addressing modes
- Too many bits are needed to specify the address
for a large physical memory space
- EA = IR(addr) (IR(addr): address field of IR)

* IndirectAddressing Mode
The address field of an instruction specifies the address of a memory

location that contains the address of the operand

- When the abbreviated address is used large physical memory can be
addressed with a relatively small number of bits

- Slow to acquire an operand because of an additional memory access

- EA = M[IR(address)]

Computer Organization ComputerArchitectures Lab

Central Processing Unit 18 Addressing Modes

TYPES OF ADDRESSING MODES

« Relative Addressing Modes
The Address fields of an instruction specifies the part of the address
(abbreviated address) which can be used along with a designated
register to calculate the address of the operand
- Address field of the instruction is short
- Large physical memory can be accessed with a small number of

address bits

- EA = f(IR(address), R), R is sometimes implied

3 different Relative Addressing Modes depending on R;

* PC Relative Addressing Mode (R = PC)
- EA=PC + IR(address)
* Indexed Addressing Mode (R = IX, where IX: Index Register)
- EA=IX + IR(address)
* Base Register Addressing Mode
(R = BAR, where BAR: Base Address Register)
- EA = BAR + IR(address)

Computer Organization ComputerArchitectures Lab

Central Processing Unit 19 Addressing Modes

ADDRESSING MODES -EXAMPLES -

Address Memory

200 JLoad to AC | Mode
|__Pc=200 | 201 | Address = 500
202 Next instruction
| Ri1=400 |
399 450
[_xR=100 | 400 700
| AC |
500 800
600 900
Addressing Effective Content 702 325
Mode Address of AC
Directaddress 500 * AC <« (500) * 800
Immediate operand - * AC « 500 b 500 800 300

Indirectaddress 800 /*AC <« ((500)) * 300
Relativeaddress 702 /*AC « (PC+500) ¥ 325
Indexedaddress 600 /* AC « (RX+500) ¥ 900

Register - * AC « R1 * 400
Registerindirect 400 * AC «(R1) | 700
Autoincrement 400 I* AC « (R1)+ * 700
Autodecrement 399 I* AC « -(R) i 4350

Computer Organization ComputerArchitectures Lab

Central Processing Unit 20 Data Transferand Manipulation

DATA TRANSFER INSTRUCTIONS

- Typical Data Transfer Instructions

Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output ouT

Push PUSH

Pop POP

- Data Transfer Instructions with Different Addressing Modes

Mode éﬁﬁﬁg‘nﬁ%n Register Transfer
Directaddress LD ADR AC « M[ADR]
Indirectaddress LD @ADR AC « M[M[ADR]]

Relative address LD $ADR AC « M[PC + ADR]
Immediate operand LD #NBR AC « NBR
Index addressing LD ADR(X) AC « M[ADR+ XR]

Register LD R1 AC <« R1
Registerindirect LD (R1) AC <« M[R1]
Autoincrement LD (R1)+ AC < M[R1],R1 «<R1+1
Autodecrement LD -(R1) R1<«<R1-1,AC « M[R1]

Computer Organization ComputerArchitectures Lab

Central Processing Unit

21

Data Transferand Manipulation

DATA MANIPULATION INSTRUCTIONS

» Three Basic Types: Arithmetic instructions
Logical and bit manipulation instructions

Shift instructions

« Arithmetic Instructions

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with Car ADDC
Subtractwith Borrow SUBB
Negate(2’s Complement) NEG

Computer Organization

Name Mnemonic
Clear CLR
Complement COM
AND AND

OR OR
Exclusive-OR XOR
Clear carry CLRC
Setcarry SETC

Complementcarry COMC
Enable interrupt
Disable interrupt

El
Dl

« Logical and Bit Manipulation Instructions

« Shift Instructions

Name Mnemonic
Logical shiftright SHR
Logical shiftleft SHL

Arithmetic shiftright SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL
Rotaterightthru carry RORC
Rotate leftthrucarry ROLC

ComputerArchitectures Lab

Central Processing Unit 22

FLAG, PROCESSOR STATUS WORD

« |n Basic Computer, the processorhad several (status) flags — 1 bit
value that indicated various information about the processor’s
state— E, FGI,FGO, |, IEN, R

* |In some processors, flags like these are often combinedinto a
register — the processor status register (PSR); sometimes called a
processor status word (PSW)

« Common flagsin PSW are
— C (Carry): Set to 1 if the carry out of the ALU is 1
— 8 (Sign): The MSB bit of the ALU’s output
— Z (Zero): Setto 1 if the ALU’s output is all 0’'s
— V (Overflow): Setto 1 if there is an overflow

Status Flag Circuit

N (O &

C 8-hit ALU
& Fr-Fo
VIZIS|C
1 F;
‘ Check for 18
zero output |
F

Computer Organization ComputerArchitectures Lab

Central Processing Unit Program Control

PROGRAM CONTROL INSTRUCTIONS

+1
In-Line Sequencing (Next instruction is fetched
I from the next adjacent location in the memory)
PC
1 Address from other source; Current Instruction,

Stack, etc; Branch, Conditional Branch,
Subroutine, etc

* Program Control Instructions

Name Mnemonic
‘Branch BR
Jump JMP
Skip SKP
Call CALL
Return RTN
Compare(by —) CMP
Test(by AND) TST

* CMP and TSTinstructions do notretain their
results of operations(—and AND, respectively).
They only setor clear certain Flags.

Computer Organization ComputerArchitectures Lab

Central Processing Unit 24 Program Control

CONDITIONAL BRANCH INSTRUCTIONS
Mnemonic Branch condition Tested condition
BZ Branchif zero 2=1
BNZ Branchif notzero Z2=0
BC Branch if carry c=1
BNC Branchif no carry C=0
BP Branch if plus S=0
BM Branch if minus S=1
BV Branch if overflow V=1
BNV Branch if no overflow V=0
Unsigned compare conditions (A - B)
BHI Branchif higher A>B
BHE Branchif higheror equal A=B
BLO Branchif lower A<B
BLOE Branchiflowerorequal A<B
BE Branchif equal A=B
BNE Branch if notequal A+B
Signed compare conditions (A - B)
BGT Branch if greaterthan A=B
BGE Branchif greaterorequal A=z=B
BLT Branchif less than A<B
BLE Branchif less or equal A<B
BE Branchif equal A=B
BNE Branch if notequal A=B

Computer Organization ComputerArchitectures Lab

Central Processing Unit 25 Program Control
SUBROUTINE CALL AND RETURN

Call subroutine

Jump to subroutine

Branch to subroutine

Branch and save return address

« Subroutine Call

« Two Most ImportantOperations are Implied;

* Branch to the beginning of the Subroutine
- Same as the Branch or Conditional Branch

* Save the Return Address to get the address
of the location in the Calling Program upon
exit from the Subroutine

. . CALL
« Locations for storing Return Address SP < SP - 1
« Fixed Location in the subroutine (Memory) M[SP] < PC
+ Fixed Location in memory PC < EA
* In a processor Register
+ In memory stack RTN
- most efficient way PC <« M[SP]
SP < SP +1

Computer Organization ComputerArchitectures Lab

Central Processing Unit 26 Program Control

PROGRAM INTERRUPT

Types of Interrupts

External interrupts
External Interrupts initiated from the outside of CPU and Memory

- I/O Device — Data transfer request or Data transfer complete
- Timing Device — Timeout

- Power Failure

- Operator

Internal interrupts (traps)
Internal Interrupts are caused by the currently running program
- Register, Stack Overflow
- Divide by zero
- OP-code Violation
- Protection Violation

Software Interrupts
Both External and Internal Interrupts are initiated by the computer HW.
Software Interrupts are initiated by the executing an instruction.
- Supervisor Call — Switching from a user mode to the supervisor mode
— Allows to execute a certain class of operations
which are not allowed in the user mode
Computer Organization ComputerArchitectures Lab

Central Processing Unit 27 Program Control

INTERRUPT PROCEDURE

InterruptProcedure and Subroutine Call

- The interrupt is usually initiated by an internal or
an external signal rather than from the execution of
an instruction (except for the software interrupt)

- The address of the interrupt service program is
determined by the hardware rather than from the
address field of an instruction

- An interrupt procedure usually stores all the
information necessary to define the state of CPU
rather than storing only the PC.

The state of the CPU is determined from;
Content of the PC
Content of all processor registers
Content of status bits

Many ways of saving the CPU state
depending on the CPU architectures

Computer Organization ComputerArchitectures Lab

Central Processing Unit 28

COMPLEX INSTRUCTION SET COMPUTER

Continuing growth in semiconductor memory and
microprogramming

—> A much richer and complicated instruction sets
and addressing modes
—> Complex Instruction Set Computers (CISC)
* Richerinstruction sets would simplify compilers

 Richerinstructionsets would move as much functions to the
hardware as possible

« Richerinstruction sets would improve architecture quality

* One goal for CISC machines was to have a machine language
instruction to match each high-level language statement type

Computer Organization ComputerArchitectures Lab

Central Processing Unit 29

VARIABLE LENGTH INSTRUCTIONS

 Thelarge number of instructions means a greater number of bits to
specify them

 Thelarge number of instructions and addressing modes led CISC
machines to have variable length instruction formats

« |In order to manage this large number of opcodes efficiently, they
were encoded with different lengths:
— More frequently used instructions were encoded using short opcodes.
— Less frequently used ones were assigned longer opcodes.

« Also, multiple operand instructions could specify different
addressing modes for each operand
— For example,
» Operand 1 could be a directly addressed register,
» Operand 2 could be an indirectly addressed memory location,
» Operand 3 (the destination) could be an indirectly addressed register.

« All of this led to the need to have differentlength instructions in
differentsituations, depending on the opcode and operands used

Computer Organization ComputerArchitectures Lab

Central Processing Unit 30

VARIABLE LENGTH INSTRUCTIONS

 Forexample, an instruction thatonly specifies register
operands may only be two bytes in length

— One byte to specify the instruction and addressing mode
— One byte to specify the source and destination registers.

« An instruction that specifies memory addresses for operands
may need five bytes
— One byte to specify the instruction and addressing mode
— Two bytes to specify each memory address
» Maybe more if there’s a large amount of memory.

« Variable length instructions greatly complicate the fetch and
decode problem for a processor

« The circuitry to recognize the various instructions and to
properly fetch the required number of bytes for operandsis
very complex

Computer Organization ComputerArchitectures Lab

Central Processing Unit 31

COMPLEX INSTRUCTION SET COMPUTER

« Another characteristic of CISC computers is that they have
instructions that act directly on memory addresses

— For example,
ADD L1,L2,L3
that takes the contents of M[L7] adds it to the contents of M[L2] and stores the
result in location M[L3]

« An instruction like this takes three memory access cycles to
execute

 The problems with CISC computers are

— The complexity of the design may slow down the processor,

— The complexity of the design may result in costly errors in the processor
design and implementation,

— Many of the instructions and addressing modes are used rarely, if ever

Computer Organization ComputerArchitectures Lab

Central Processing Unit 32 RISC

SUMMARY: CRITICISMS ON CISC

High Performance General Purpose Instructions

- Complex Instruction
— Format, Length, Addressing Modes
— Complicated instruction cycle control due to the complex
decoding HW and decoding process

- Multiple memory cycle instructions
— Operations on memory data
— Multiple memory accesses/instruction

- Microprogrammed control is necessity
— Microprogram control storage takes
substantial portion of CPU chip area
— Semantic Gap is large between machine
instruction and microinstruction

- General purpose instruction setincludes all the features
required by individually different applications
— When any one application is running, all the features
required by the other applications are extra burden to
the application

Computer Organization ComputerArchitectures Lab

Central Processing Unit 33

REDUCED INSTRUCTION SET COMPUTERS

* |nthe late ‘70s and early ‘80s there was a reaction to the
shortcomings of the CISC style of processors

 Reduced Instruction Set Computers (RISC) were proposed as
an alternative

 The underlying idea behind RISC processors is to simplify the
instruction set and reduce instruction execution time

« RISC processors often feature:

— Few instructions

— Few addressing modes

— Only load and store instructions access memory

— All other operations are done using on-processor registers
— Fixed length instructions

— Single cycle execution of instructions

— The control unit is hardwired, not microprogrammed

Computer Organization ComputerArchitectures Lab

Central Processing Unit 34

REDUCED INSTRUCTION SET COMPUTERS

« Sinceall butthe load and store instructions use only registers for
operands, only a few addressing modes are needed

« By having all instructions the same length, reading them in is
easy and fast

 The fetch and decode stages are simple, looking much more like
Mano’s Basic Computer than a CISC machine

« Theinstruction and address formats are designed to be easy to
decode

« Unlike the variable length CISC instructions, the opcode and
register fields of RISC instructions can be decoded
simultaneously

« The controllogic ofa RISC processoris designed to be simple
and fast

 The controllogicis simple because of the small number of
instructions and the simple addressing modes

« The controllogicis hardwired, rather than microprogrammed,
because hardwired control is faster

Computer Organization ComputerArchitectures Lab

Central Processing Unit 35 RISC

ARCHITECTURAL METRIC

AcB+C
B« A+C
D«D -B
« Register-to-register (Reuse of operands)
8 4 16
Load | rB B
Load | rC ?
£dd 1A 1B 16 | = 228b
Store | TA A
Add | 1B |TA [rC] D =192b
Store | B B M = 420b
Load | rD D
sSub | [D 1B
Store | 1D D
« Register-to-register (Compiler allocates operands in registers)
8 4 4 4
Add rA| B | rC | = 60b
Add | rB| rA [rC D=0b
Sub | D B M = 60b
 Memory-to-memory
8 16 16 16
Add B C A | = 168b
Add A C E D = 288b
Sub B D D M = 456b

Computer Organization ComputerArchitectures Lab

Central Processing Unit 36

REGISTERS

« By simplifying the instructions and addressing modes, thereis
space available on the chip or board of a RISC CPU for more
circuits than with a CISC processor

« This extra capacity is usedto
— Pipeline instruction execution to speed up instruction execution
— Add a large number of registers to the CPU

Computer Organization ComputerArchitectures Lab

Central Processing Unit 37

PIPELINING

« A very importantfeature of many RISC processors is the ability
to execute an instruction each clock cycle

« This may seem nonsensical, since it takes at least once clock
cycle each to fetch, decode and execute an instruction.

« |tis however possible, because of a technique known as
pipelining
— Study later

* Pipeliningis the use of the processor to work on different
phases of multiple instructions in parallel

Computer Organization ComputerArchitectures Lab

Central Processing Unit 38

PIPELINING

Forinstance, at one time, a pipelined processor may be
— Executing instruction J;
— Decoding instruction iy,

— Fetching instruction i, from memory

« S0, ifwe'rerunning threeinstructions at once, and it takes an
average instruction three cycles to run, the CPU is executing an
average of an instruction a clock cycle

« As we’ll see when we cover itin depth, there are complications
— For example, what happens to the pipeline when the processor branches

 However, pipelined execution is an integral part of all modern
processors, and plays an importantrole

Computer Organization ComputerArchitectures Lab

Central Processing Unit 39

REGISTERS

» By having a large number of general purpose registers, a
processorcan minimize the number of times it needs to access

memory to load or store a value

 Thisresults in a significant speed up, since memory accesses
are much slowerthanregister accesses

« Register accesses are fast, since they just use the bus on the
CPU itself, and any transfer can be donein one clock cycle

+ To go off-processorto memory requires using the much slower
memory (or system) bus

« |t may take many clock cycles to read or write to memory
across the memory bus
— The memory bus hardware is usually slower than the processor

— There may even be competition for access to the memory bus by other
devices in the computer (e.g. disk drives)

« So, forthis reason alone, a RISC processor may have an
advantage over a comparable CISC processor, since it only
heeds to access memory

— for its instructions, and
— occasionally to load or store a memory value

Computer Organization ComputerArchitectures Lab

Central Processing Unit 40 RISC

REGISTER WINDOW APPROACH

* Observations

- Frequency of HLL Operations
— Procedure call/return is the most time consuming operations

- Locality of Procedure Nesting
— The depth of procedure activation fluctuates
within a relatively narrow range

- A typical procedure employs only a few passed

] parameters and local variables
» Solution

- Use multiple small sets of registers (windows),
each assigned to a different procedure

- A procedure call automatically switches the CPU to use a different
window of registers, rather than saving registers in memory

- Windows for adjacent procedures are overlapped
to allow parameter passing

Computer Organization ComputerArchitectures Lab

Central Processing Unit 41 RISC

CIRCULAR OVERLAPPED REGISTER WINDOWS

RRRRRRR

oA
fffffff
LLs s
////////
ffffff

CCCCCC
Window-
Pointer

ety

Computer Organization ComputerArchitectures Lab

Central Processing Unit 42 RISC

RT3 RZ5
Localto D
R64 R16
RG3 R15] R¥M
Commonto Cand D
R58 R10| R26
R&T Proc D | R25
Local to C
R43 R16
R47 R15] R3
Commeon to B and C
R42 R10| R26
R41 Proc C | R25
Localto B
R32 R16
R31 R15] RM
Commeonto A and B
R26 R10] RZ6
R#5 Proc B | R25
Local to A
R16 R16
R15 R31 e
Common Commonto A and D

R10 R26 Jto D and A | R10
R3 R Proc A

Common to all

procedures
RO RO

Global
registers

Computer Organization ComputerArchitectures Lab

Central Processing Unit 43

OVERLAPPED REGISTER WINDOWS

There are three classes of registers:

— Global Registers
» Available to all functions

— Window local registers
» Variables local to the function
— Window shared registers
» Permit data to be shared without actually needing to copy it

+ Onlyoneregister window s active at a time
— The active register window is indicated by a pointer

 When a functionis called, a new registerwindow s activated
— This is done by incrementing the pointer

 When a function calls a new function, the high numbered
registers of the calling function window are shared with the
called function as the low numbered registers in its register
window

« This way the caller’s high and the called function’s low registers
overlap and can be used to pass parameters and results

Computer Organization ComputerArchitectures Lab

Central Processing Unit 44

OVERLAPPED REGISTER WINDOWS

« |n addition to the overlapped register windows, the processor
has some number of registers, G, that are global registers

— This is, all functions can access the global registers.

« The advantage of overlapFed registerwindows is that the
processordoes not have to push registers on a stack to save
values and to pass parameters when thereis a function call

— Conversely, pop the stack on a function return

 This saves

— Accesses to memory to access the stack.
— The cost of copying the register contents at all

* And, since function calls and returns are so common, this
resultsin a significant savings relative to a stack-based
approach

Computer Organization ComputerArchitectures Lab

Central Processing Unit 45 RISC

CHARACTERISTICS OF RISC

* RISC Characteristics

- Relatively few instructions

- Relatively few addressing modes

- Memory access limited to load and store instructions
- All operations done within the registers of the CPU

- Fixed-length, easily decoded instruction format

- Single-cycle instruction format

- Hardwired rather than microprogrammed control

« Advantages of RISC

- VLSI Realization

- Computing Speed

- Design Costs and Reliability

- High Level Language Support

Computer Organization ComputerArchitectures Lab

Central Processing Unit 46

ADVANTAGES OF RISC

RISC

* VLS| Realization Example:
RISC I: 6%
Control area is considerably reduced RISC II: 10%

MC68020: 68%
general CISCs: ~50%

— RISC chips allow a large number of registers on the chip

- Enhancement of performance and HLL support
- Higher regularization factor and lower VLSI design cost

The GaAs VLSI chip realization is possible

- Computing Speed

- Simpler, smaller control unit = faster

- Simpler instruction set; addressing modes; instruction format
— faster decoding

- Register operation = faster than memory operation

- Register window — enhances the overall speed of execution

- Identical instruction length, One cycle instruction execution
— suitable for pipelining — faster

Computer Organization ComputerArchitectures Lab

Pipelining and VVector Processing 1

PIPELINING AND VECTOR PROCESSING

« Parallel Processing
* Pipelining

« Arithmetic Pipeline
* Instruction Pipeline
* RISC Pipeline

« Vector Processing

* Array Processors

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 2 Parallel Processing

PARALLEL PROCESSING

« Parallel processingis a term used for a large class of techniques that
are used to provide simultaneous data-processing tasks for the
purpose of increasing the computational speed of a computer system.

Computer Organization ComputerArchitectures Lab

Pipelining and VVector Processing

PARALLEL PROCESSING

« Example of parallel Processing:

> Adder-Subtractor —
— Multiple Functional Unit:
Separate the execution unit into _
: _ ; : : SR Integer Multiply o
eight functional units operating in
parallel.
™ Logic Unit ™
N Shift Unit o
To Memory
Processor S Incrementer >
Registers ™
e
Floating-Point Adder-
Subtractor
e Floating-Point Multiply = ——»

. Floating-Point Divide N

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 4 Parallel Processing

PARALLEL COMPUTERS

Architectural Classification

— Flynn's classification
» Based on the multiplicity of /Instruction Streams and Data Streams
» |lnstruction Stream
« Sequence of Instructions read from memory
» Data Stream
« Operations performed on the data in the processor

Number of Data Streams
Single Multiple
Number of | Single SISD SIMD
Instruction
Streams Multiple MISD MIMD

Computer Organization ComputerArchitectures Lab

Pipelining and VVector Processing

Parallel Processing

Control Processor .

SISD COMPUTER SYSTEMS

Data stream

Unit | Unit

E i il

»| Memory

Instruction stream

 Characteristics:

v'multiple functional units
v'pipeline processing

»0One control unit, one processor unit, and one memory unit
»Parallel processing may be achieved by means of:

Computer Organization

ComputerArchitectures Lab

Pipelining and Vector Processing 6 Parallel Processing

MISD COMPUTER SYSTEMS

............................ —

m——fco——¢] i
:....'l«'.'.'.'.'.'.'.;

M p——{cu}——| P ——
h“““““““““““““-J; -

m ——[col——[7p] : Data stream

Instruction stream

Characteristics

- There is no computer at present that can be classified as MISD

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 7 Parallel Processing
SIMD COMPUTER SYSTEMS
Memory

Data bus 1

|
Control Unit
I Instruction stream
P P o P | Processorunits

1 Data stream

I

Alignment network

I

M

—] = | —

l

M| Memory modules

« Characteristics

» Only one copy of the program exists
» A single controller executes one instruction at a time

Computer Organization

ComputerArchitectures Lab

Pipelining and Vector Processing 8 Parallel Processing

MIMD COMPUTER SYSTEMS

PIM PIM coe PIM

I I 1

Interconnection Network

l

Shared Memory

« Characteristics:
» Multiple processing units (multiprocessor system)
» Execution of multiple instructions on multiple data

* Types of MIMD computer systems
- Shared memory multiprocessors
- Message-passing multicomputers (multicomputer system)

* The main difference between multicomputer system and multiprocessor
system s that the multiprocessor systemis controlled by one operating
system that provides interaction between processors and all the
component of the system cooperate in the solution of a problem.

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 9 Pipelining

PIPELINING

+ Atechnique of decomposing a sequential process into suboperations,
with each subprocess being executed in a special dedicated segment
that operates concurrently with all other segments.

A*B. +C; fori=1,2,3 ..,7

= T A, B, Memory c,
Segment 1
| R1 | | R2 |
Multiplier
Segment 2
R3 R4
Adder
Segment 3
¥ R5
Suboperations in each segment: R1 < A;, R2 « B,
Load A and B,

P
L

ComputerQrganization ™2 < R

RZ R4 T, Cnmpurermi&’m'@i&h’res Lab

Pipelining and VVector Processing

10

Pipelining

OPERATIONS IN

EACH PIPELINE STAGE

Clock Segment 1 Segment 2 Segment 3
Pulse
Number | R1 R2 R3 R4 RS
1 A1 B1 --- smz | iocemss
2 A2 B2 A1*B1 C1 | =—===e-
3 A3 B3 A2*B2 C2 A1*B1 + C1
4 A4 B4 A3*B3 C3 A2*B2+ C2
5 AdS BS Ad*B4 C4 A3*B3+C3
6 A6 B6 AS5*BS C5 A4*B4 +C4
7 A7 B7 A6*B6 C6 A5*B5+ C5
8 A7 *B7 C7 A6 *B6 + C6
9 A7 * B7 + C7

Computer Organization

ComputerArchitectures Lab

Pipelining and VVector Processing

11

Pipelining

GENERAL PIPELINE

« General Structure of a 4-Segment Pipeline

Clock J’

Input —| s —|R4

T

R2

1

R3

« Space-Time Diagram
The following diagram shows 6 tasks T1 through T6 executedin 4

segments.
Clockcycles
112 |13]415]161718189
1| T1| T2|T3| T4| T5| T6
Segment 2 TI|T2| T3| T4| T5| T6
3 TI| T2 T3| T4]| T35 T6
4 TI| T2 T3| T4| T5| T6

No matter how many
segments, once the
pipeline is full, it takes only
one clock period to obtain
an oufput.

Computer Organization

ComputerArchitectures Lab

Pipelining and Vector Processing 12 Pipelining

PIPELINE SPEEDUP

Considerthe case where a k-segment pipeline used to execute n tasks.
» N =6 In previous example
» K =4 In previous example
* Pipelined Machine (k stages, n tasks)

»The firsttask t1 requires k clock cycles to complete its operation
since there are k segments

»The remaining n-1 tasks require n-1 clock cycles

»The n tasks clock cycles = k+(n-1) (9 in previous example)
« Conventional Machine (Non-Pipelined)

»Cycles to complete each task in nonpipeline = k

»For n tasks, n cycles required is
« Speedup (S)

»S = Nonpipeline time /Pipeline time

» Forntasks: S =nk/(k+n-1)

» As n becomes much larger than k-1; Therefore, S = nk/n =k

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 13 Pipelining

PIPELINE AND MULTIPLE FUNCTION UNITS

Example:
- 4-stage pipeline
- 100 tasks to be executed
- 1 task in non-pipelined system; 4 clock cycles
Pipelined System: k+n-1=4+ 99 =103 clock cycles
Non-Pipelined System: n*k =100 "4 =400 clock cycles
Speedup: S,=400/103=3.88

Computer Organization ComputerArchitectures Lab

Pipelining and VVector Processing

Types of Plgellnlng

* Arithmetic Pipeline
Instruction Pipeline

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 15 Arithmetic Pipeline

ARITHMETIC PIPELINE

Floating-point adder i Mantissas
[1] Compare the exponents l) l j) f
[2] Align the mantissa l R I | R |
[3] Add/sub the mantissa _ |
[4] Normalize the result Segment 1: exponents | Rifference
by subtraction
X=Ax102=0.9504 x 10° | é i
Y =B x10°=0.8200 x 102 |
Segment 2: [Choose exponent | »| Align mantissa__|
1) Compare exponents : }
3.5 =1 | R |
2) Align mantissas l
X =0.9504 x 10° Segment 3: A antssas
Y = J : 'L 0 X .V.--] J
3) Add mantlssas I R | | R |
Z=10324 x 103 J l
4) Normallze result Segment 4: Eﬂgg;t -« Normalize
Z=0.10324 x 10¢ | l
| R | | R |

: '

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 16 Instruction Pipeline

INSTRUCTION CYCLE

Pipeline processing can occur also in the instruction stream. An instruction
pipeline reads consecutive instructions from memory while previous
Instructions are being executed in other segments.

Six Phases” in an Instruction Cycle

[1] Fetch an instruction from memory

[2] Decode the instruction

[3] Calculate the effective address of the operand
[4] Fetch the operands from memory

[5] Execute the operation

[6] Store the result in the proper place

* Some instructions skip some phases

* Effective address calculation can be done in the part of the decoding phase

* Storage of the operation result into a register is done automatically in the execution
phase

==> 4-Stage Pipeline

[1] Fl. Fetch an instruction from memory

[2] DA: Decode the instruction and calculate the effective address of the operand
[3] FO: Fetch the operand

[4] EX: Execute the operation

Computer Organization ComputerArchitectures Lab

Pipelining and VVector Processing

17

Instruction Pipeline

INSTRUCTION PIPELINE

Conventional

Execution of Three Instructions in a 4-Stage Pipeline

i| FI | DA] FO|EX
i+1| FI | DA| FO|EX
i+2 | FI |DA|FO|EX
Pipelined
i| FI | DA]FoO | EX
i+1| FI | bA] Fo| EX
i+2| FI | DA]| FO| EX

Computer Organization

ComputerArchitectures Lab

Pipelining and Vector Processing 18 Instruction Pipeline

INSTRUCTION EXECUTION IN A 4-STAGE PIPELINE
v v

segmentt: | FS N Temory

v

Decode instruction

Segment2: and calculate
9 effective address

Branch?

no

Fetch operand
from memory

yes

Segment3d:

Segmentd: |Execute instruction |

handling

no Step: 1 2 314 5 B 7 8 9 10 11 12 13

Update PC

FI |DA JFO JEX

Instruction
2 FI | DA JFO | EX
(Branch) 3 FI JDA|FO | EX
4 FI = | = |FI |DA|FO |EX
5 - | =] = |Fl |DA]FO|EX
B FI |DA |FO | EX
7 FI |DA |FO |EX

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 19

Pipeline Conflicts

— Pipeline Conflicts : 3 major difficulties

1) Resource conflicts: memory access by two segments at the same
time. Most of these conflicts can be resolved by using separate
Instructionand data memories.

2) Data dependency: when an instruction depend on the result of a
previous instruction, but this result is not yet available.

Example: an instruction with register indirect mode cannot proceed
to fetch the operand if the previous instruction is loading the address
Into the register.

3) Branch difficulties: branch and other instruction (interrupt, ret, ..)
that change the value of PC.

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 20 RISC Pipeline

RISC Computer

* RISC (Reduced Instruction Set Computer)
- Machine with a very fast clock cycle that executes at the rate of one
Instruction per cycle.

« Major Characteristic
1. Relatively few instructions
2. Relatively few addressing modes
3. Memory access limited to load and store instructions
4. All operations done within the registers of the CPU
9. Fixed-length, easily decoded instruction format
6. Single-cycle instruction execution
7. Hardwired rather than microprogrammed control
8. Relatively large number of registers in the processor unit
9. Efficientinstruction pipeline
10. Compiler support for efficient translation of high-level language
programs into machine language programs

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 21

RISC PIPELINE

RISC Pipeline

* Instruction Cycle of Three-Stage Instruction Pipeline
I: Instruction Fetch
A: Decode, Read Registers, ALU Operation

E: Transferthe output of ALU to a register, memory, or PC.

« Types of instructions
- Data Manipulation Instructions

- Load and Store Instructions

- Program Control Instructions

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 22 VectorProcessing

VECTOR PROCESSING

« There is a class of computational problems that are beyond the
capabilities of a conventional computer. These problems require a vast
number of computations that will take a conventional computer days or
even weeks to complete.

Vector Processing Applications
« Problems that can be efficiently formulated in terms of vectors and

matrices
— Long-range weather forecasting - Petroleum explorations
— Seismic data analysis - Medical diagnosis

— Aerodynamics and space flight simulations
— Artificial intelligence and expert systems
— Mapping the human genome
— Image processing
Vector Processor (computer)

 Ability to process vectors, and matrices much faster than conventional
computers

Computer Organization ComputerArchitectures Lab

Pipelining and VVector Processing

VectorProcessing

VECTOR PROGRAMMING

Fortran Language

20

I =
)

1, 100
+ A(I)

Conventional computer (Mahine language)

20

ITnitialize I = 0
Read A(I)
Read B(I)
Store C(I)
Increment 1
I3 I = 100 gote 20

= A(I) + B(I)
—

Vector computer

C{1l:100) A{(1:100) + B(1:100)

Computer Organization

ComputerArchitectures Lab

Pipelining and Vector Processing 24

VECTOR PROGRAMMING

— Vector Instruction Format :

Operation Base address | Base address | Base address ector
code source 1 source 2 destination length
ADD B C 100

— Matrix Multiplication
» 3 X 3 matrices multiplication :

tyy, dyy, g E’11 Dis Fi Cyp G O
tyy Uy Uy | X Zjll b:: ‘5:3 =1 €2 o
| U3 U3y Uiy _bil ’-73'33 05 1 L1 S35 G

Chi= b tas) Ra 0

Computer Organization ComputerArchitectures Lab

Pipelining and VVector Processing

25

« after 1st clock input

— Pipeline for calculating an inner product :
» Floating point multiplier pipeline : 4 segments
» Floating point adder pipeline : 4 segments

C—_AB - AB tAD teet Al

Source
A
L piAB, | 0 | O 0 N 0 0 [o
» B
—
Source Multiplier Adder
B pipeline pipeline
- after 4th clock input
Source
A
AB. |AB; [AB; [AB, 0 0 0 0
B
Source Multiplier Adder
B pipeline pipeline

Computer Organization

ComputerArchitectures Lab

Pipelining and VVector Processing

26

+ after 8th clockinput

C=4b +4.b,+A4b5,+--+ AD,

Source
& L»
—»
A:B{ABJAB| ABI ™ A,B|/A.B| ABLAB >
—»
Source Multiplier Adder
B pipeline pipeline
» after 9th, 10th,11th,...
Source
A
A.B,| A.B] A,B AEE—.“A;EEA4E4 A.B.|A,B, >
Source Multiplier Adder
B pipeline pipeline
C = +Ang + Ay B+
LB, T BN+ A B, +A,B, +
+ A By + A By + A By, + A B+
Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 27 VectorProcessing

MEMORY INTERLEAVING

Pipeline and vector processors often require simultaneous access to
memory from tow or more sources.

« An Instruction pipeline may require the fetching of an instruction and an
operand at the same time from two different segments.

« An arithmetic pipeline usually requires two or more operands to enter
the pipeline at the same time.

« |nstead of using two memory buses for simultaneous access, the
memory can be partitioned into a number of modules connected to
common memory address and data buses.

« Address Interleaving
»Different sets of addresses are assigned to different memory modules

» Forexample, in a two-module memory system, the even addresses
may be in one module and the odd addresses in the other.

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 28 VectorProcessing

MEMORY INTERLEAVING

Address bus
MO l M1 l M2 i M3 l
AR i1 [AR it [AR AR
Memory Memory Memory Memory
array : array array array
: [DR ii [DR i [DR ! [DR
o 3 o ¢ I i s i E
Data bus

* A vectorprocessorthatuses an n-way interleaved memory can fetch n operands
from n differentmodules. By staggering the memory access, the effective
memory cycle time can be reduced by a factor close to the number of modules.

* A CPU with instruction pipeline can take advantage of multiple memory modules
so that each segment in the pipeline can access memory independent of memory
access from other segments.

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 29

Supercomputer

Supercomputer = Vector Instruction + Pipelined floating-point arithmetic
High computational speed, fast and large memory system.
Extensive use of parallel processing.

1t is equipped with multiple functional units and each unit has its own
pipeline configuration.

e Optimized for the type of numerical calculations involving vectors and
matrices of floating-point numbers.

e Limitedin their use to a number of scientific applications:
- humerical weather forecasting,
- Selsmic wave analysis,
o S§pace research.
¢ They have limited use and limited market because of their high price.

-

-

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 30

Supercomputer

e Performance Evaluation Index
» MIPS : Million Instruction Per Second
» FLOPS : Floating-point Operation Per Second
= megaflops : 108, gigaflops : 10°

e Cray supercomputer:
» Cray-1: 80 megaflops, (1976)
» Cray-2: 12 times more powerful than the Cray-1
e /P supercomputer: Fujitsu
» VP-200 : 300 megaflops, 83 vectorinstruction, 195 scalar instruction
» VP-2600 : 5 gigaflops

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 31

9-7 Array Processors

— Performs computations on large arrays of data
» Attached array processor:

« Auxiliary processor attached to a general purpose computer
to improve the numerical computation performance.

» SIMD array processor:
« Computer with multiple processing units operating in parallel
—Vector C=A+B ¢ =a +Db

— Although both types manipulate vectors, their internal organization is
different.

Computer Organization ComputerArchitectures Lab

Pipelining and Vector Processing 32

9-7 Array Processors

Attached array processor
General- purpose Input- Cutput Altached amay
computer interface Processor

| |

; Hgh- speed memory to-
Main memory g Loca memory
memory bus

« Designed as a peripheral for complex scientific applications attached
with a conventional host computer.

« The peripheral is treated like and external interface. The data are
transferred from main memory to local memory through high-speed bus.

« The general-purpose computer without the attached processor serves
the users that need conventional data processing.

Computer Organization ComputerArchitectures Lab

Thank
You

