. [Computer Architecture and Organisation ju

Compurer ARcHiTecTure AND ORGANISATION

CoMPUTER DATA
REPRESENTATION

PREvious YEARs QUESTIONS

ParT-A

o

Q.1 Wlty-we use Cil and Cir notations?

. Ans. We use the notation Cil and Cir for circular shift left
micro-operation and circular shift right micro-operation.

Q.2 What is MIMD organization?

Ans. It refers to a computer system capable of pracessing
several programs at the same time.

Q.3 What is register mode?

Ans. In this mode, the operands are in register that reside
within the CPU. The particular register is selected from a
register field in the introduction.

- -

) IU rite the types of shift-micro operations?

f

>

ns. .
e Logical Shift
e Circular Shift
e Arithmetic Shift

Q.5 What is the relationship between timing and
control signal?
Ans. Timing and Control Signal : All sequential circuits
in the basic computer CPU are driven by a master clock,
with the exception of the INPR register.
At each clock pulse, the control unit sends control
signals to control inputs of the bus, the registers, and the

ALU.

‘ Control unit design and implementation can be done
by two general methods:

e A hardwired control unit is desizned from scratch
using traditional digital logic design techniques to
produce a minimal, optimized circuit. In other words,
the control unit is like an ASIC (application-specific
integrated circuit).

e A microprogrammed control unit is built from some
sort of ROM. The desired control signals are simply
stored in the ROM, and retrieved in sequence to
drive the microoperations needed by a.particular
instruction.

'ParT-B

Q.6 - Explain and draw a diagram of a bus system
that use multiplex k, register of n bits each to
produce an n-line common bus. JR.T.U. 2016}

Ans. Bus System : A bus structure consists of a set of
common lines, one for each bit of register, through which
binary information is transferred one at a time. The
common bus system can be constructed with multiplexers.
Multiplexers select the source register whose binary
information is then placed into bus.

In general a bus system will multiplex k register of
n bits each to produce an n-line common bus. T'he number
of multiplexers needed to construct the bu§ is equal to
number of bits each register. (n bit register uses o
multiplexer). The size of each multiplexer must be k x L.

Example : A digital circuit has a common bus
system for 16 register of 32 bits each. Then th;: nu_mbcr
of selection input in each multiplexer is 5(32=2°). Sizeof

"{‘-nu-um Architecture and Organisation

. e ———— ‘ |
COUT RS, [, TR | |

")
Outpet | Regester Sebect | 1, | S nlrnnlnl " RS
Contral | Control lapuns | ‘ | “
lopet Duting an ‘
Durwmg Interval | | |
imrer~al

— & T S—

| | =1,
™17t ’T"'T"T"T_T'ﬁ"'_’"
i { !
|

4
-
)
-

_—

0 l[o

r
R
I S

i [eTi11]1 Bus

Ty

|

1 0 1 Bus

—ry

| 1 | 0

-, i ‘

I 1 | | | Bus

N

|
N

Fig. | : Bus transfer ndg;ro-optmrlan Srom register to processor
internal bus

[Imput | Register Select | rr | re ‘ oo I r I nln I l’.}
Coatrel	Coatrol Inputs .		1 I		
lapat During an			I		
During laterval T			i		
Interval					
T ‘			t {		
_OUT [RS, RS, [RS,	:				
~71 Tolo]o T T T					
E					—re
ool I L B]					

| | | | =or, |
- o1 110 T [Bus T _l
\ 0y
1 BERE . Bus 1
| 41,

| 1 0 0 Bus ¢
| -1,
|) \ 0 1 Bus
L]
1 | | 0 Bus
s}

|] ! 1 1 |Bus
1 =0

Ans. Fixed Point Number Representation

Fig. 2 : Bus transfer micro-operation from processor
internal bus to register

When neither IN nor OUT is enables then the register
is in disconnected state (tristate) with the bus.

1:: ﬁd do you understand by fixed point number
representation?

: The

shifting process above is the key to understand fixed point
number representation. To represent a real number in
computers (or any hardware in general), we can define a
fixed point number type simply by implicitly fixing the
binary point to be at some position of a numeral. We will

”

then simply adhere to this implicit convention when we
represent numbers. ‘ e
To define a fixed point type conceptuily,
need are two parameters: _
« width of the number representation, and
binary point position within the number
We can use the notation fixed<w, b>, where w
denotes the number of bits used as a whole (lhc Wldlh.Of
a number), and b denotes the position of l;mary point
counting from the least significant bit (counting from 0).
For example, fixed<8,3> denotes a 8-bit fixed point
number, of which 3 right most bits are fractional. Therefore,
the bit pattern:
[1

Lof ool vrTofm

represents a real number:
00010.110,
mpelefetygen?
w2+035+025
=275
Note that on a computer, a bit pattern can represents
anything. Therefore the same bit pattern, if we “cast” it

toanother type, such as a fixed<8,5> type, will represents
the numbes

000.10110,
-=102'|+|¢2']+|¢24
=0.5+0.125 +0.0625

;\“ we

[o]

=(0.6875
If we treat this bit pattern as integer, it represents
the number:
10110,
=1°2'+ 122414
=16+4+2
=22

Q.10 What is the method to represent multiple
instruction in register transfer?

Ans. Register Transfer

* Register names use capital letters
by numbers, e.g. PC, RO, R1, ..,
Individual bits are numbered acco
of two when they contain an
integer. i.e. the rightmost bit is
etc. Bits are numbered this way regardless of
whether the register contains an unsigned binary
integer, because it's an easy convention.

* Registers drawn as a box with the name inside. Bit
numbers are written above,

* 16-bit registers may be divided into low

bytes in both diagrams and in writing, e.
15) = PC(H), PC(0-7) = PC(1)

pogsibly followed

rding to the power
unsigned binary
bit 0, next is bit k.

and high
g PC(8-

|

1ton :
nputer
f CPU
icitly
ore the
at that
; field.
chine

i CPU

rand is

second
in the

er data
to the

ype of

ress
to be

ned in

ration,
on.

s data
RE 1s

- from

imetic

AULT

PDP-

atory
iction

' the
hort

~—{B.Tech. (VI Sem.) C.5. Solved Papers)
_smﬁz._n:.o: cycle takes less time because it saves
_ time ininstruction fetching from memory.
Disadvantages
. c.qs...q., complex expressions are computed, program
siz€ increases due to the usage of many short
Instructions to execute it. Thus memory size
increases.
* As the number of ipstructions increases for a
program, the execution time increases.

—_—
plain the register transfer language.

>uu..m~nnmu8_‘ Transfer Language : The symbolic
notation used to describe the microoperation transfers
among registers is called a register transfer language.

* Theterm “register transfer” implies the-availability
of hardware logic circuits that can perform a stated
microoperation and transfer the result of the
operation to the same or another register.

* The word “language” is borrowed from
programmers, who apply this term to programmin
languages. ’

* A register transfer language is a system for
expressing in symbolic form the microoperation
sequences among the registers of a digital module.

e Itis a convenient tool for describing the internal
organization of digital computers in concise and
precise manner.

® Itcan also be used to facilitate the design process
of digital systems.

¢ Information transfer from one register to another
is designated in symbolic form by means of a
replacement operator. : ;

* The statement below denotes a transfer of the
content of register R, into register R,.

R, « R,
¢ Astatement that specifies a register transfer implies
that circuits are available from the outputs of the
destination register has a parallel load capability.
* Every statement written in a register transfer
notation implies a hardware construction for
implementing the transfer.

ParT-C

register transfer language.
OR

[R.T.U. 2017]

—(cA61)

(Computer Architecture and Organisation }-

Write 3 different types of shift micro-operations
in Register Transfer Language. [RTU. 2014/

Ans. Shift. Micro-operations : Shift micro-operations
are used to transfer the data serially. These are used in
combination with arithmetic logic and other data processing
operations. This operation shift the contents of register in
left or right direction. At the same time when the bits are
shifted the last or first flip-flop receives the binary
information from the serial input. During shift left operation
the serial input transfers a bit into the last flip-flop at the
right most position,

\J\J \uw\J\J\J\J 7\

F 17 ¥ {7 |7 L4 .
Bit Serial

Lost Input

The rest of the bits are shifted towards left by one
bit position.

Similarly during a shift right operation the serial input
transfer a bit into the first flip-flop at the left most position.
LONLNNN N

RN N[SN[X[X[R ¥
Serial ___| Bit

Input Lost

The rest of the bits are shifted towards right by one
bit position.

There are three types of shift micro-operation. Each
micro-operation can be done in left or in right direction.

(i) Logical Shift

(i) Circular Shift .

(iii) Arithmetic Shift

These are shown in Table.

Table : Shifted Micro-operations

S.No. Symbolic Description
Designation

1. |[R«ShlR Shift left register R
2. |[ReShrR Shift right register R
3. |R«<CilR Circular Shift left register R |
4. |[R«CirR Circular Shift right register R
5. |R<ashlR Arithmetic Shift left R
6. |R<«ashrR Arithmetic Shift right R

(i) Logical Shift: A logical shift transfers 0 through
the serial input. Shl denotes logical shift left operation while
Shr denotes logical shift right operation.
For example: R, - ShI R,

R, «ShrR,

The two micro-operations that specify a 1 bit shift to
the left of the content of register R | and a 1 bit shift to the

the end position through the serial input 15 assu
0 during a logical shift.

med to be

rm:ﬁ._ﬂ_o_o_____c_i__oi_

mz?ﬂo_o_,_a_o_a_o_ﬂm_

0 is inserted
through serial input

MSB of register R, is Jost during this micro-operation.
swr[o+ [+ (oo 1]olr]
4 ;
O is insened

through serial input . .
(ii) Circular Shift : It is also known as rotate micro-

operation. It circulates the bits of the register around both
the ends without any loss of information. This is done by
connecting the serial output of the shift register to the
serial input. We use the notation Cil and Cir for circular
shift left micro-operation and circular shift right micro-
operation. i

For example:

R, a_o—,o‘a—w—O—a—oT
seeno oo e [+] -

—
z_To._qm_l.._L_o_o_._ _A_o_A _jm.

ofr1folof+T1To[¥]

There is no loss of information in case of circular left
and right micro-operation.

(iii) Arithmetic Shift : An arithmetic shift micro-
operation shifts a signed binary number to the left or right
direction. An arithmetic shift left multiplies a signed binary
number by 2 and arithmetic shift right divides a signed
binary number by 2.

For example :

Innoonnnny
Resnn[o]oTo [0 1 [o]o [o]-s

So, ashl R multiplies the number by 2.

wewei 2o [o [0 [0 [o [+ [a]-2

So, ashr R divides the number by 2.

LSB - cost

right of the content of register R,. The'bit transferred to

- - - - - - - - -

(caGs)

Arithmetic shifts must leave the sign bit unchanged
because while dividing or multiplying the number by 2 sign
of the number remains same.

The left most bit of the number holds the sign and
the remaining bits represent the actual number. The sign
bit is 0 for positive numbers and | for negative numbers in
all representations.

= [~ T~ Trr]

The arithmetic shift right leaves the sign bitunchanged
and shifts the number to the right. Thus R, will remain
same and R, receives the bits from R,._, and so on for
the other bits in the register. The right most bit Ry is lost.
R « ashr R

(elrJr o [T
R, «Lost
The arithmetic shift left inserts a 0 into R, and shifts
all other bits to the left. The initial bit of R, is lost and
replaced by the bits from R,

N R «ashIR

=] — T = Tw]o]

A sign several occurs if the bits in R, changes in
value after shift. This happens if the multiplication by 2
causes an overflow.

Overflow : An overflow occurs after an arithmetic
shift leftif initially before the shift micro-operation R, is

not equals to R _,. An overflow flip-flop can bé used to
detect an arithmetic overflow.
<9.ﬂn_oihmﬁ.7_®mﬂ=|u .
IfV . erow = 0 there is no overflow bit, iV g eeniow=1s

there is an overflow and a sign reversal after the shift.
V verfiow 1 transferred ::.o the o<n1_.o£ flip-flop with the
same clock pulse that shifts the register.

Q.17((a) a computer has 128 operation codes and

512 K addresses, how many bits would be

required for

()" Single address instruction

(iy~ Two address instruction

(b) What is instruction? What are different
parts of an instruction? Explain the
significance of each part of an instruction
swith an example.

fc) What do you mean by instruction set
completeness? [R.T.U. Dec. 2013/

——(B.Tech. (VI Sem.) C.5. Solved Papers)
For one address bits required
=19as512 K =2"x20= 21
An instruction consists of opcode + address thus
(i) Number of bits required for single address instruction
=7+ 19 =26 bits
(i) Number of bits required for two address instruction
=7+ 19+ 19 =45 bits,
Ans. (b) Instruction : A computer instruction is a binary
code that specifies a sequence of micro operations for
the computer. Instruction codes together with data are
stored in memory. The computer reads each instruction
from memory and places it in a control register. The control
then interprets the binary code of the instruction and
proceeds to execute it by issuing a sequence of micro
operations. Every computer has its own unique instruction
set. The ability to store and execute instructions, the stored
program concept, is the most important property of a

-general-purpose computer,

Different Parts of an Instruction

An instruction code is a group of bits that instruct
the computer to perform a specific operation. The-
instruction has four parts : indirect bit, an operation code,
a register code part and an address part. The most basic
part of an instruction code is its operation part. The
operation code of an instruction is a group of bits that
define such operations as add, subtract, multiply, shift, and
complement. The number of bits required for the operation
code of an instruction depends on the total nymber of
operations available in the computer. The operation code
must consist of at least » bits for a'given 2" (or less)
distrinct operations. As an illustration, considera computer

- with 64 distinct operations, one of them being an ADD
operation. The operation code consists of six bits, witha -

bit configuration 110010 assigned to the ADD operation.
When this operation code js decoded in the control unit,
the computer issues control signals to read an operand
from memory and add the operand to a pracessor register,

At this point we must recognize the relationship
between a computer operation and a micro operation. An
operation is part of an instruction stored in computer
memory. It is a binary code that tells the computer to
perform a specific operation, The control unit receives
the instruction from memory and interprets the operation
mo.n.o bits. It then issues a sequence of control signals to
Initiate micro operations in internal computer registers.
For every operation code, the control issues a sequence
of micro operations needed for the hardware

Ans. (a) Bit required for opcodes
=7as2"=128

impl nation of the specified operation, For this reason,
an operation code is sometimes called a macro operation
because it specifies a set of micro operations,

ﬁoe_.:h:nn.. Architecture and Organisation Je—

The operation part of an instruction code specifies
the operation to be performed. This operation must be
performed on some data stored in processor registers or
in memory. An instruction code must therefore specify
not only the operation but also the registers or the memory
words where the operand are to be found, as well as the
register or memory word where the result ;,E be stored.
Memory words can be specified in instruction codes by
their address. Processor registers can be specified by

assigning to the instruction another binary code of & bits

that specifies one of 2* registers. There are many
variations for arranging the binary code of instructions,
and each computer has its own particular instruction code
format.)

For example, suppose an operand stored in address
P in memory is to be added to one stored in Q and the
result is to be stored in a address R, and the address of
the next instruction to be executed is S, then an instruction
would be of the type : i
ADD P Q R S

What task? | Address | Address of | Address | Address where

i Second of next instruction
M“ﬁﬂ!.g annn:a.:inn_ Op d result would be found

The instruciton given above is known as a four
address instruciton. If amemory has 256K addresses then
each address would be_18 bits long. The last address is
not required as such. Ignoring the last address we have
total 3 address instruction. Assuming 7 bits for opcode
the length of instruction willbe 7+ 18 + 18 + 18 =61 bits.
Ans. (c) Instruction ; Before investigating the operations
performed by the instructions, let us discuss the type of
instructions that must be included in a computer. A
computer should have a set of instrugtions so that the user
can construct machine language programs to evaluate any
function that is known to be computable. The set of
instructions are said to be complete if the computer
includes a sufficient number of instructions in each of the
following categories:

1. Arithmetic, logical, and shift instructions.

2. Instructions for moving information to and from

memory and processor registers.

3. Program control instructions together with

instructions that check status conditions,

4. Inputand output instructions.

Arithmetic, logical, and shift instructions provide
computational capabilities for processing the type of data
that the user may wish to employ. The bulk of the binary
information in a digital computer is stored in memory, but
all computations are done in processor registers. Therefore,
the user must have the capability of moving information
between these two units. Decisions making capabilities

are an important aspect of digital computers. For example,
two numbers can be compared, and if the first is greater
than the second, it may be necessary to proceedd rently
than if the second is greater than the first. Program control
insturctions such as branch instructions are used to change
the sequence in which the program is executed. Inpunt
and output instructions are needed for communication
between the computer and the user. Programs and data
must be transferred into memory and results of
computations must be transferred back to the user.
Table : Basic computer instructions

Hexadecim-"
Symbol code | Description
I=0 1=1"
AND Oxxx 8xxx |AND memory word to AG
ADD Ixxx 9xxx |Add memory word to AG
LDA 2XXX Axxx |Load memory word to AG
STA 3xxx Bxxx |Store content of AC in
BUN 4xxx Cxxx |menory
BSA 5xxx | Dxxx |Branch unconditionally
1Sz 6xxx Exxx |Branch and save return
address
Increment and skip if zero
CLA -7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AG
CME 7100 Complement E
CIR - 7080 Circulate right AC and E
CIL 7040 ; |Circulate left AC and E
INC 7020~ |Increment AC
SPA 7010 Skip next instruction if AC
SNA 7008 positive
SZA 7004 Skip next instruction if AC
SZE 7002 negative
HLT 7001 Skip next instruction if AC
zero
Skip next instruction if E is 0
Half computer
INP F800 Input character to AC
ouT F40n Output character from AC
SK1 F2 Skip on input flag
SKO Fi.u Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

Interrupt handling

In the programmed input method, the CPU staysina
program loop until the input unit indicates thatit is ready
for data transfer. This is a time-consuming process since
it keeps the processor busy needlessly. It can‘be avoided
by using an interrupt facility and special commands to
inform the interface to issue an interrupt request signal.
when the data are available from the device. In the mean

(caoao)
time the CPU can p d o another progr
The interface meanwhile keeps monitoring the device.
When the interface determines that the device is ready
for data transfer, it generates an interrupt request to the
p Upon ing the | interrupt signal, the
CPU momentarily stops the task it is processing, branches
to a servi:2 program to process the /o transfer and then
j.a the task it was originally performing.

Q.18 () List atleast five essential functional blocks that
any computer should possess. Describe briefly
the role of each block.

(8) Define three state bus buffers. Wihat do you
understand by high impedance state in three

{B.Tech. (v Sem.] C.S. Solved Papers)
information on magnetic tape while the computer 1s
otherwise employed. Then, the input information, now on
magnetic tape, can be written into the computer much
faster than from the cards.

NPT DATA
s GovIRNING

OUTPUT DATA SPOSITION ©F DATA

Fig. 2 : Input devices block

The arithmetic unit (fig. 3) of the computer is limited

in its mathematical ability. No problem can be solved unless
it can be reduced to the simple arithmetic operations of
addition, subtractions, multiplication, or division. The
computer cannot be given entire equations and commanded

state buffers? [R.TU. 2013 to produce a solution. Instead, the equation must be

OR duced to its simplest el This matter of reducing

Draw and explain a graphical rep aproblem to its simpls | inaseq and form

and block diagram for three state bus buffers. that will allow its solution by a particular computer is called

JR.T.U. 2011, Raj. Univ. 2007, 2005] p progs g. The arithmetic unit includes, asa

the ability to count and add. Fortunately, the

Ans.(a) The five essential functions of a digital p other arithmetic operations can be reduced to counting
can be diagramed in block form (fig.1). The input devices and adding.

are keyboards, punched card readers, punched tape
readers, magnetic tape readers, print readers, and analog-
to-digital converters. They read or accept data in original
form and, if necessary, convert it to binary d | form
(fig. 2). One of the problems concerning the design of the
input equipment is the great difference in speed berween
some of the input devices and the much faster electronic
circuits in the control, arithmetic, and memory sections.
Input

Fig. | : Digltal compuzer, JSunction block diagram
One solution is the use of high speed tape reading

and tape writing equip For ina p
where punched cards are the primary input medium, it is
uneconomical o tie up the entire machine during the
relatively slow process of reading cards. It is better to
read the cards in a separatc machine and write the

eyt DarTA
outeur pata

Fig. 3 : Arithmetic unit block

The memory unit (fig. 4) holds information until it
is needed in the computing process. The results may be
kept in memory until needed in further computation or
removed as part of the solution of the prob Exampl
of memory devices are magnelic cores, drums, disks,
tapes, wires, cathode ray tubes, flip-flop circuits, and delay
lines. The 1 of i ion stored in a
memory device is called a bit. A single bit can represent
only the binary digit 0 or the binary digit |, but bits can be
combined 10 represent “words” of numerical quantitics,
algebraic signs, operation commands, or any other
information. The state of a particular bit location in
memory is either 0 or 1, depending on whether it is offor
on, open or closed. at a low or high voltage level, in one
direction or the other of magnetic saturation, or any other
valid lued sch of repr i In most
computers, words are of the same length-10 to 50 bits per
word being typical. However, modern computers can
handle words of different length. The memory unit may
be static or dynamic in operation. In a static unit, the binary
bits of each word are assigned a set of locations with
arbitruv numbering. In a dynamic unit, each word exists
as a timed sequence of electrical or mechanical pulses
that circulate about a closed loop. In such a loop, the
memory location becomes essentially the time, with respect

3

(Ao

(Comg and Org ation p—
to a given reference time, at which the first bit of the
word passes a specified point in the circulation loop. If a
number of loops are used, a location must be specified,
both in positions and time. In the memory loops, acous al
delay lines may be used as memory elements. In both
static and dynamic memory units, the location of each
word in a unit is given by a number known as the address
of that word. Memory add are frequently exp d
as a two-part number, containing a channel number anda
sector number, or their equivalents

LUNTS GOVTINING
WAL N, 80AB OUT

st

outrut BATA

Fig. 4 : Memory unit block
The control unit (fig. 5). as its name implies, controls

the routing and disposition of data, operatio nstructions,
and the sequence of operations. In the same way that a
great degree of variation occurs in the design of radar
synchronizing or indicating systems, a similar w ide vanation
exists in the design of the control unit. The control uni
composed of the same kind of logical devices and circ its
that are used in the arithmetic unit. It is hard to tell by
looking whether such a device or circuit |
unit or the arithmetic unit, because the basic operatu
computing and control are so closely related.

Fig. 5 : Control unif block
The primary purpose of an output device is 10
furnish or record solutions in a usable form. Examples of
output devices (fig. 6) are electric typewriters, ed
numerals, paper tape, card punches, printers, and digital-
to-analog converters.

NPu1 BATA CONIOL LimIT GOVIINNG
THE
ourrul BATA AND R1A0-OUT OF Data

Fig. 6 : Qutput devices block
Ans.(b) Three-State Bus Buffers
A bus system can be constructed with three-state
gates instead of multiplexers. A three-state gate is a digital
circuit that exhibits three states. Two of (he states are
signals equivalent to logic | and 0 as in a conven
gate. The third state is a high-impedance state. The high-
impedance state behaves like an open circuit, w
that the output i disconnected and does not have a logic
significance. Three-state gates may perform any
conventional logic, such as AND or NAND. However,
the one most commonly used in the design of a bus system
is the buffer gate.

f a three-state buffer gate is
shown is fig 1. Itis di inguished from n,uc:.:-_ buffer E_\
having both a normal putand a control input. The n_c.==.o
:_vEmn_n::. nes the output state. When the control _."..6_.__
is equal to 1, the output Is u:..#.nn and the gate behaves
Jike any conventional buffer, with the output equal to the
normal input. When the control input is 0, the output is
disabled and the gate goes to a high-impedance state,
regardless of the value in the normal input. The high-
impedance state of a {hree-state gate provides a mnon:.._
feature not available in other gates. Because of this
feature, a large number of three-state gate outputs can
be connected with wires to form a common bus line
without endangering loading effects.

The construction of a bus system with three-state
buffers is demon-strated in fig.2. The outputs of four
buffers are connected together to form a single bus line.
(It must be realized that this type of connection cannot be
done with gates that do not have three-state outputs). The
control inputs to the buffers determine which of the four
normal inputs will communicate with the bus line. No more
than one buffer may be in the active state at any given
time. The connected buffers must be controlled so that
only one three-state buffer has access to the bus line while
all other bufTers are maintained in a high-imped. state.

One way to ensure that no more than one control
input is active at any given time is to use a decoder, as
shown in the diagram. When the enable input of the
decoder is 0, all of its four output are 0, and the bus line is
a high-imp state b all four buffers are
abled. When the enable input is active, one of the three-
state buffers w | be active, depending on the binary value
in the select inputs of the decoder.

Normal input 4 Output ¥ =Aif C=1
High-impedance if C=0
Control input €

Fig. I : Graphic symbols for three-state buffer
Bus line for bit 0

The graphic symbol o

Fig. 2: Bus line with three state-buffers

'

(©aoT-

To construct a common bus for four registers of n
bits each using three-state buffers, we need n circuits with
four buffers in each as shown in fig. Each group of four
buffers receives one significant bit from the four registers
Each common output produces one of the lines for the
common bus for a total of n lines. Only one decoder is
necessary to select berween the four registers.

Q.19 Explain basic data representation method of
computer? What is the difference between I's
and 2's complement?

Ans. Data Representation : Computer memaory stores
only sequences of 0's and 1's. In order for data to be
meaningful we must agree how to encode that data with
0's and 1's. Unfortunately, there are several systems that
are used.

Unsigned Integers

e Simply use binary

» Using N bits, the integers 027" can be
represented.

Examples : 17
Signed Magnitude

e Use the first bit for a sign (0 for =, | for-)

« Use the remaining N-1 bits for the magnitude
(absolute value), in binary

e For N bits, -(2"™".1) to +(2*™"-1) can be
represented.

. mmau_o.g.w_._,_,—:ﬂn:nn_qn.:_mvooo..._nmtxe..wa

s Two different zeroes are created (+0 is 000..00-
and -0 is 100..00)

e Arithmetic is awkward eg. add 0101 with 1110
Since signs are different, determine the larger
whose sign will be kept for answer, subtract larger
from smaller. Not pretty
Examples: +15, -6

Excess-N

+ To represent X, use the binary code for X+M

e Excess-2"™1is normal, but any value of M can be
used :

The 4-bit codes for signed integers in these formats:

Value | Signed Magnitude | Excess-7 Excess-8
-9 = = =

[-8 e — | 0000
=] 1111 0000 0001
- 1110 0001 | 0010
-5 1101 0010 | 0011
T4 1100 0011|0100
=3 1011 0100 | 0101
=y 1010 0101|0110

v

o 0111 1110 1111

we v

+8 —ee 1111 ----

e 0111

o1

o

@. ow to represent floating point and IEEE

floating paint number?

Ans. Floating-Point Representation : This’

representation does not reserve a specific number of bits
for the integer part or the fractional part. Instead it reserves
a certain number of bits for the number (called the
mantissa or significand) and a certain number of bits to
say where within that number the decimal place sits (called
the exponent).

The floating number representation of a number
has two part: the first part represents a signed fixed point
number called mantissa. The second part of designates
the position of the decimal (or binary) point and is called
the exponent. The fixed point mantissa may be fraction
or an integer. Floating point is always. interpreted to
represent a number in the following form: Mxr®.

Only the mantissa m and the exponent e are
physically represented in the register (including their sign).
A floating-point binary number is represented in a similar
manner except that is uses base 2 for the exponent. A
floating-point number is said to be normalized if the most

significant digit of the mantissa.is 1.

n ' 0
rSign bit l Bcpqtenl I Mantissa I)
Biase} form ‘

Fig.

So, actual number is (-gl)(1+m)x2Bi%), where s is
the sign bit, m is the mantissa, e is the exponent value,
and Bias is the bias number.

Note that signed integers and exponent are
represented by either sign representation, or 1’s complement
representation, or 2°s complement representation.

The floating point representation is more flexible.
Any non-zero number can be represented in the normalized
form of (1.b,b,b; ...),x2". This is normalized form of a
r.amber X. '

E'xa.mple : Suppose number is using 32-bit format: the |
bit sign bit, 8 bits for signed exponent, and 23 bits for the
fractional part. The leading bit 1 is not stored (as it is
always 1 for a normalized number) and is referred to as 2
“hidden bir”.

Then -53.5 is normalized as -53.5=(-110101.1),=
(-1.101911)*2°, which is represented as following : .

1 1] 00000101

Sign Exponent part
bit

[10101100000000000000000 |
Mantissa part

Where 00000101 is the 8-bit binary value of
exponent value +5.

Note ihat 8-bit exponent field is used to store integer
exponents —126 <n < 127.

The smallest normalized positive number that fits
into 32 bits is '

(1.00000000000000000000000), i

_ =2712651.18 % 107,

and largest normalized positive number that fits
into 32 bits is ‘ s

(LI T T 1), x 27

=(2%= 1) x 2'% =3.40 x 10%.
These numbers are represented as following :

Smallest [0 | 10000010] 00000000000000000000000 |
Sign’ Exponent part Mantissa part
bit

Largest [0] 01111111 111111111111111111111111J

o, TRpometpss - < .

The precision of a floating-point format is the number
of positions reserved for binary digits plus one (for the
hidden bit). In the examples considered here thé precision
is23+1=24. s

The gap between 1 and the next normalized
floating-point number is known as machine epsilon. the
gapis(l+ N _1= 2723 but this is same as the smallest

S —

(CAGA G~ ’

positive floating-point nu.nber because of non-uniform.

spacing unlike in the fixed-point scenario.

Note that non-terminating binary numbers can be
represented in floating point representation, e.g., 1/3 =
(0.010101 ...), cannot be a floating-point number as its
binary representation is non-terminating.

IEEE Fleating point Number Representation : IEEE
(Institute of Electrical and Electronics Engineers) has
standardized Floating-Point Representation as :

N 0

Sign bit Exponent .) Mantissa

So, actual number is (—=1)°(1 + m) x 2(e-Bias) where
s is the sign bit, m is the mantissa, e is the exponent value,
and Bias is the bias number. The sign bit is O for positive
number and 1 for negative number. Exponents are
represented by or two’s complement representation.
According to IEEE 754 standard, the floating-point
number is represented in followmg ways:
¢ HalfPrecision (16 bit): 1 sign bit, 5 bit exponent,
: and 10 bit mantissa
o Single Precision (32 bit): 1 sign bit, 8 bit exponent
and 23 bit mantissa
e Double Precision (64 bit): | sign bit, 11 bit
exponent, and 52 bit mantissa
e . Quadruple Precision (128 bit): 1 sign bit, 15 bit
exponent, and 112 bit man.issa
Speécial Value Representation:

There are some special. values depends upon

different values of the exponent and mantissa in the IEEE

754 standard.
~ e All the exponent blts,(l with all.mantissa bits 0

represents 0. If sagn bit.is 0,-then +0, ¢lse -0.
e All the exponent bxts 1 with all mantissa bits 0
represents infinity. If sign.bit is 0,then + o0, else —co0 .
e All the exponent bits 0 and mantissa bits non-zero
. ., represents de-normalized number. -
o All the exponent bits 1 and mantissa bits non-zero
represents error.

T

—(CAO.15

e —

to the indirect phase to read the effective address at
location 135, where it finds the previously saved addn_:ss
21. When the BUN instruction is executed, the effective
address 21 is transferred to PC . The next instruction cycle
finds PC with the value 21, so control continues to execute

e instruction at the return address.
(N e T

@ plain the register transfer in detail with block
diagram and timing diagram.

Ans. Register Transfer : Information transfer from one

register to another is designated in symbolic form by means

of a replacement operator is known as register transfer.
R, « R,

Denotes a transfer of the content of register R

into register R..
Computer registers are designated by capital letters
(sometimes followed by numerals) to denote the function

of the register

For example:

MAR 'Holds address of memory unit
PC Program Counter
IR Instruction Register
[Ry Processor Register

Below fig. 1shows the representation of registers
in block diagram form.

Register Showing individual bits

r R | |T65432|ﬂ

15 0 15 8 7 0
(R, | [rcon [pc) |
Numbering of bits Subfields

Fig. 1: Block diagram of register

The most common way to represent a register is
by a rectangular box with the name of the register inside,
as shown in fig.

Bits 0 through 7 are assigned the symbol L (for low
byte) and bits 8 through 15 are assigned the symbol H
(for high byte). The name of the 16-bit register is PC.
The symbol PC (0-7) or PC (L) refers to the low-order
byte and PC (8-15) or PC (H) to the high-order byte.

{B.Tech. (VI Sem.) C.8. Solved Papers)

The statement that specifies a register transfer
implies that circuits are available from the outputs of the
source register to the inputs of the destination register
and that the destination register has a parallel load
capability.

Register Transfer with Control Function:

If we want the transfer to occur only under a
predetermined control condition. This can be shown by
means of an if-then statement.

If (P =1) then (R, « R))

Where, P is a control signal.

It is sometimes convenient to separate the control
variables from the register transfer operation control
function by specifying a control function.

A control function is a boolean variable that is equal
to 1 or 0. The control function is included in the statement
as follows:

P:R,« R,

The control condition is terminated with a colon. It
symbolizes the requirement that the transfer operation be
executed by the hardware only if P =1,

Every statement written in a register transfer
notation implies a hardware construction for implementing
the transfer. Below fig. 2 shows the block diagram that
depicts the transfer from R, to R..

Control |P Load

Circuit

Fig. 2: Transfer from R, to R, when P=1
t+1

T oy L
N o R
Load _r

Transfer occurs here
Fig. 3: Timing diagram

The n outputs of register R, are connected to the n
inputs of register R,. The letter n will be used to indicate
any number of bits for the register. In the timing diagram,
P is activated in the control section by the rising edge of a
clock pulse at time t. The next positive transition of the
clock actime t + | finds the load input active and the data
inputs of R, are then loaded into the register in parallel. P
may go back to 0 at time t + 1; otherwise, the transfer will
occur with every clock pulse transition while P remains
active. The basic symbols of the register transfer notation

are listed in table below:

Table : Basic Symbols for Register Transfers

Symbol | Description | Examples |
Letters (and Denotes a register MAR, R,
numerals)

Parentheses () Denotes a part of a Ry(0-7),
register Ra(L)

Arrow Denotes transfer of R;«<R,
information

Comma, Separates two micro R,<R,,
operations J Ri<R;

Registers are denoted by capital letters, and
numerals may follow the letters. Parentheses are used to
denote a part of a register by specifying the range of bits
or by giving a symbol name to a portion of aregister. The
arrow denotes a transfer of information and the direction
of transfer. A comma is used to separate two or more
operations that are executed at the same time. The
statement below, denotes an operation that exchanges the
contents of two registers during one common clock pulse
provided that T = 1.

T:R«R, R«R,
This simultaneous operation is possible with

registers that have edge-triggered flip-flops.
Qoo

=

o =0 wdl A% o _ .

PROGRAMMING THE Basic COMPUTER

IMPORTANT QUESTIONS

PaAarT-A

v

Q.1 “What do you mean by machine language?

Ans. Machine Language : It referred to as machine or
object code, machine language is a collection of binary
digits or bits that the computer reads and interprets.

Q.2 What does mnemonic mean?

Ans. Mnemonic : Mnemonic is a term, symbol or name
used to define or specify a computing functions. Assembly
languages also uses a mnemonic to represent machine
operation, or opcode. '

Q.3 Write the use of assembly language.

Ans. Assembly Language : Assembly languages are
used for real time systems and microprocessor based
applications/devices.

What is an assembler? N ¥

Ans. Assembler : An assembler is a program that
converts assembly language into machine code. It takes
the basic commands and operations from assembly code
and converts them into binary code that can be recognized
by a specific type of processor.

Assemblers are similar to compilers in that they
produce executable code. However, assemblers are more
simplistic since they only convert low-level code (assembly
language) to machine code. Since each assembly language
is designed for a specific processor, assembling a program
is performed using a simple one-to-one mapping from

assembly code to machine code. Compilers, on the other
hand, must convert generic high-level source code into
machine code for a specific processor.

Most programs are written in high-level
programming languages and are compiled directly to
machine code using a compiler. However, in some cases,
assembly code may be used to customize functions and
ensure they perform in a specific way. Therefore, IDEs
often include assemblers so they can build programs from
both high and low-level languages.

PaArT-B

Q.5 . What is loop? Explain types of loops.

Ans. Loops @ Loops are among the most basic and
powerful programming concepts. A loop in a computer
program is an instruction that repeats until a specified
condition is reached. In a loop structure, the loop asks a
question. If the answer requires action, it is executed. The
same question is asked again and again until no further

action is required. Each time the question is asked is called
iteration,

Types of Loops

e A forloop is a loop that runs for a preset number

of times. .

A while loop is a loop that is repeated as long as an
-expression is true. An expression is a statement
that has a value.
A do while loop or repeat until loop repeats until
an expression becomes false.
An infinite or endless loop is a loop that repeats
indefinitely because it has no terminating condition,
the exit condition is never met or the loop is

e instructed to start over from the beginning. _Although

ERR R R R R RN ANRRNRRRNY,

(6R0.50)- s

The flak of crrors exiating i the syntas ul

'Illnh of erroe
e hine Tangiage fohigh

Memorization Phnary codes cannet e meimnoiizod

Compiler
cornimainds

l.fll Imr is the ;Hl,’.*rvm ¢ benween control miemory

amd main memory !

= S ET——— s = — -

Ang, Control memory i memony nside the CPU or other
control unit, We cannot sce it on the motherbonnd, or even
by looking at the CPU or control ehips Thivmemory holds
micromstructions, I the memory can be written to, 1 i
called the Writeable Control Store, s memory hold the
steps or innersworkings of the CPU fsell These days,
RISC based CPUs do not use microistrnctions, because
by imnl\\mng the mstructions thoy can pot faster
exeeution

Main memory is ontside the CPUL We can see it
plugged into the motherboard . Main memony in noconsod
through the MMU and the cache of the CPUL Access to
control memory is only internal to the ohip itsell
Introduction of Control Unit and ity Design

Control Unit i the part of the computer's central
processing unit (¢ PUY, which directs the operation of the
processor, 1t was ineluded as part of the Von Newmann
Architecture by John Von Neumann, Itis the rosponsibility
of the Control Unit to tell the computer’s memory,
arithmetic/logic unitand input and output devices how to
respond fo the instructions that have been sont to the
processor. It tetehes internal instructions of the programs
from the main memory to the processor instruetion register,
and based on this register contents, the control unit

generates a control signal that supervises the execution

of these instructions.

A control unit works by receiving input information
to which it converts into control signals, which are then
sent to the central processor, The computer's processor
then tells the attached hardware what operations to
The functions that a control unit performs are
type of CPU because the architecture
nanufacturer to manulacturer

perform.
dependent on the
of CPU varies from | . 1o m
Examples of devices that require CU are:
Control Processing Units(CPUSs)

. : '
Graphic Processing Units(GI'Us)

No compiler s necessay Tor executing

- s L LA T A e e Fupirs)

Pl hske ol enporn wnintiing b nasembily linguge
I compintively fow

b ponsible o memonize thie cammnds glven
b naneinbly Tangngon

A comiptlon, alao known ag an nssemibler, 14
needed Tor the proper execution of assembly
Iniguinge comminds

| Tusbpnietlion
1 lates

LN
l ot Hignala £
il 11
.

i :
Canliol Blgnals i
[RITTE) . Control : T € ‘|:i!hn| b d’
Uit
Clink . -

Contial Signals
1 Cundiol bus

g o Whaek dingrom of the Contral Unit
Funetions of the Control Unht

I Iteoordinatos the sequence ol data movements into,
out of, and between a processor’s many sub-units,

2o Witerprets dnstractions.

1o eontrols data How inside the processor,

Ao 1 receives external instructions or commands o
which it converts 1o sequence of control signaly,

5 1t controls miny execution units(r.e. ALU, data
bulters and registers) contained within o CPPU,

0. 1 nbwo handles multiple asks, such as fetching,
decoding, exceution handling and storing results,

Main Memory : Main memory refers to physical memory -

(hat s internal to the computer, The word gnain is used to
distinguish it from external mass storage devices such ns
disk drives. Other terms used to mean main memory
include RAM and primary storage.

The computer can manipulate only dota that is in
main memory, Therefore, every program user execute
evury file nccess must be copied from a storage device
into muin memory. The amount of main memory on a
computer is crucinl because it determines how many
programs can be executed at one time and how much
duta can be readily availuble to a program,

Because computers often have too little main
memory to hold all the data they need, computer engineers
invented a technique called swapping, in which portions
of data are copied into main memory as they are needed,

(1 e _.M whiliesiur " u-au} i lum‘;;lt-lu __.l-u)--—-—

Swapping oceurs when there is no room in memory for

peeded duta, When one portion of data 15 copied into
miemony, an equal-sized portion 1s copied (swapped) out
fa inake raonm

O 0 What do you understand by design of control
wnit? What Is the difference between Hardwired
Control and Micro programmed Control unir?

——— =

Ans, Design of Control Unit : Control unit generates
timing and control signals for the operations of the
computer, The control unit communicates with ALU and
main memory. It also controls the transmission between
processor, memaory and the various peripherals, It also
instructs the ALU which operation has to be performed
on didla

Control unit can be designed by two methodswhich
are given below ’
Hardwired Control Unit : It is implemented with the
help of gates, flip flops, decoders ete. in the hardware,
I'lie inputs to control unit are the instruction register, flags,
timing signals etc. This organization can be very
complicated if we have to make the control unit large

If the design has to be modified or changed, all the
combinational circuits have to be modified which 1s a very
difficul. task

Control unat [r——

oy IR i)

Sequence counter —

Fig.
Microprogrammed Control Unit : It is implemented
by using programming approach. A sequence of micro
operations is carried out by executing a program consisting
of micro-instructions, In this organization any modifications
or changes can be done by updating the micro program in
the control memory by the programmer.

o == e

ProcessiING UNIT lwll

processor

Ans. In computing, a vector processor or array
is a central processing unit (CPU) that implements an
instruction set containing instructions that operate on onc-
dimensional arrays of data called vectors.
Vector and array processing are essentially the
same with small differences
An array is made up of indexed collections of
information called indices. Though an array can, in rare
cases, have only one index collection, a vector istechnically
indicative of an array with at least two indices. Vectors
are sometimes referred 10 as “blocks™ of computer data.
Vector and array processing technology are most
often seen in high-traffic servers.

ParT-B

Q.6 / Explain the Flynn’s classification of computer.
[R.T.U. 2017]
OR
Explain Fiynn’s classification with suitable
examples. JR.T.U. 2015/
OR

Write down the Fiynn's classification of computer,
IR.TU. 2016/

OR
Explain Flynn classification of camputer
architeciure based on streams. [R.TU. 2014/

organization of a computer system by the number of
instructions and data items that are manipulated
simultaneously. The normal operation of a computer is to

Ans. Flynn’s Classification : M.J. Flyan considers the *

(1. Tech. (VI Sem) C. 6. Solved Papers)

fetch Instructions from memory and execute them
processor. The sequence of instructions read fror
constitutes an instruction stream. The operations
performed on the data in the processor constitutes a data
stream. Parallel processing may occur in the instruction
stream, in the data stream, or in both. Flynn's cla
divides computers into four major groups as follows

(i) Single instruction str ingle data stream
(SISD)

(i) Single instruction stream, multiple data stream

© (SIMD)

(i) Multiple instruction stream, single data stream
(MISD) .

(iv) Muluple instruction stream, multiple data stream

(MIMD)
SISD represents the organization of a single
computer containing a control unit, a processor
unit, and a memory unit. Instructions are
executed sequentially and the system may or
may not have internal parallel processing
¥ capabilities. Parallel processing in the case may
be achieved by means of multiple functional units

. or by pipeline processing.

T...‘\m:c:u represents an organization that includes
many processing units under the supervision of
a common control unit. All processors receive
the same instruction from the control unit but
operate oo different items of data. The shared
memory unit must contain’ multiple modules so
that it can communicate with all the processors
simultancously.

% MISD structure is only
since no practicalsystem has been constructed
using this organization.

a MIMD organization refers 1o a computer
system capable of p g several progr
at the same time. Most multiprocessor and
multicomputer systems can be classified in this
category.

Flynn's classification depends on the distinction
between the performance of the control unit and the data-
processing unit. It emphasizes the behavioral
characteristics of the computer system rather than its
operational and structural interconnections.

.7,/ Draw and explain the organization of a CPU
showing the connections between the register 1o

a common bus. IRTU. 2017, 2016)

Ans.

Fig. 1 : Block diagram of a single processor-cpu computer. Black
Lines () indicates data flow, red lines 1 - ») indicates
instruction flow and arrow indicates direction of flow.

From above diagram, it is clear that CPU consists
m: control unit, processor and bus carrying data and
Instructions.
1. Control Unit: The control unit of the CPU contains
circuitry that uses clectrical signals to direct the entire
compuler sysiem lo carry out stored program instructions.
The control unit does not execute program instructions;
rather, it directs other parts of the system to do so. The
control unit communicates with both the ALU and
memory.
2. Arithmetic Logic Unit: The arithmetic logic unit
(ALU) s a digital circuit within the processor that performs
integer arithmetic and bitwise logic operations. The inpuls
o the ALU are the data words to be operated on, status
information from previous operations, and a code from
the control unitindicating which operation to perform.

Inleger Integer
Operand Oparand

Integer
: Result
Flg. 2.: Symbolic representation of an ALY and its input and
ouiput signal

Depending on the instruction being exccuted, the
operands may come from internal CPU registers or
external memory, or they may be constants generated by
the ALU itself. When all input signals have settled and

{CA0.25

Ton)

(Computer A and Or —
propagated through the ALU circuitry, the result of the
performed operation appears at the ALU’s outputs. The
result consists of both a data word, which may be stored
in a register or memory, and status information that is
typically stored in a special, internal CPU register reserved

for this purpose
3. Memory Management Unit: Most high-end

MICroprocessors have a memory :.—m:u*ﬂ-ﬂn:- umit,
translating logscal add into physical RAM addi A
providing memory protection and paging abilities, useful
for virtual memory. Simpler processors, especially
microcontrollers, usually do not include an MMU
Hardwired into a CPU’s circuitry is a set of basic
operations it can perform, called an instruction sel. Such
operations may nvolve, for example, adding or subtracting
rwo numbers, comparing two numbers, or jumping to a
different part of a program. Each basic operation is
represented by a particular combination of bits, known as
the machine language opcodes, while exccuting instructions
in a machine language program, the CPU decides which
operation to perform by “decoding” the opcodes. A
complete machine language instruction consists of an
opcodes and, in many cascs, additional bits that specify
ar for the (for. ple, the numbers to
be summed in the case of an addition operation). Going
up the lexity scale, 2 hine language program is a
collection of machine language instructions that the CPU
executes.
The actual mathematical operation for each
instruction is performed by a combinational logic circuit
within the CPU’s processor known as the arithmetic logic
unit or ALU. In general, a CPU executes an instruction
by fetching it from memory, using its ALU to perform an
operation, and then storing the result to memory. Beside
the instructions for integer mathematics and logic
operations, various other machine instructions exist, such
as those for loading data from memory and storing it back,
heginch ; h . f

and P
floating-point numbers performed by the CPU’s floa
pointunit

%\Ei %nnk:t.nthnaQn:&_SEkh..iE..:
pipelining. JRTU. 2017, 2014f

Ans, Speedup and Efficiency : Letus consider a space-

time diagram in a pipeline p . Fig.1 shows the

space-time diagram of a four stage pipeline processol.

As shown in the fig.2 once the pipe 15 filled up, it outputs
one result per clock period independent of the number of
stages in the pipe. Ideally, a pipeline with k stages can
process n tasks in T, =k + (n - 1) clock cycles, where k
cycles are needed to complete the execution of the first
task and the remaining n - | tasks require o - | cycles.
Thus, the total time required is

rme avel
L Y

- Coma
. o .
o :.H._“m#!

Fig. I : Basic structure of a pipeline proceisor
T,=[k+(n- it

where tis the clock period

The space-time diagram shown in fig 2 has four stages
and five tasks. Therefore, the ideal total time required is

T,=[@4+(G5-1)h=8 clock cycles
The amount of time required to perform same number of
tasks in a non-pipeline processor can be given as

T, = nkt

- LT J— -

of w[e e[%] %]~

W AEEBE

of e

NEXEA R R R

: ——— =
=

Flg. 2 : The space-time diagram showing the overlapped operations
Speedup Factor : The speedup factor of a k-stage
pipeline over an equival pipelined p is
defined as

5 s B O
T, [k+(n-1)]t
= nk
k+(n-1)
For example, if pipeline has four stages and five tasks,
its speedup factor is

. 4xs
4+(5-1) 8
=25

It can be noticed that maximum speedup is S, = k
as n — . However, this maximum speed is very difficult

{B.Tech. (VI Sem.) C.S. Solved Pape:

(CAO.26) -

to. achieve because of data dependencies between
successive task (instructions), program branches,
interrupts and other factors.

Efficiency: The efficiency of a pipeline is defined
as a ratio of speedup factor and the number of stages in
the pipeline. The efficiency of k-stage pipeline is given as

S, nk
=2 —— Kk
Be= k+(n-l)/

e
= k+(n-1)

For example, if the speedu;; factor is 2.5 and the
number of stages are four, the efficiency can be given as

B =22 0ss
4

It can be noticed that the efficiency approaches to
unity when n — co. When n =1, efficiency is minimum. It
is Vk.

Throughput : The pipeline throughput H, is defined
4s the number of results (tasks) that-can be completed by
a pipeline per unit time. It is given as

. [k+(n-l)]t
E, i e
e B [k+(n—1)]

wf =1/t

In ideal case, H, = I/t = f when E, — . This means
that the maximum throughput of a pipeline is equal to its
frequency, which corresponds to one output result per clock
period. The overall throughput of pipeline is always less
than f. This is because usually E, < 1.

Speedup is a process for increasing the
performance between two systems processing the same
problem. More technically, it is the improvement in speed
of execution of a task executed on two similar
architectures with different resources. The notion of
speedup was established by Amdahl’s law.

Efficiency is a metric of the utilization of the
resources of the improved system. It is defined as: -

Efficiency = Speedup / Number of Processors
alue is typically between 0 and 1. Programs
speedup and programs running on a single
ve an efficiency of 1, while many difficult- -
rograms have efficiency tending towards
r of processors increase.

Its v

with linear
ocessor ha
1o,parallq_l_im P

Resources that are likely to be constrained a
hence form rate-limiting features of a given process a
generically called “bottlenecks”. A bottleneck occu
when the capacity of a processor is severely limited by
single component. The bottleneck has lowest throughp
of all parts of the transaction path.

Q.9 What does pipeline, vector and array processc
mean in parallel processing? [R.T.U. 201,

Ans. Parallel processing : In computers, paralle
processing is the processing of program instructions b
dividing them into multiple processors with the objectiv
of running a program in less time. It is the simultaneou
use of more than one CPU to execute a program. Multipl
outputs are computed in parallel in a clock period th:
effective sampling speed is increased by the level o
parallelism.

Pipeline processor: It is a set of data processing

- elements connected in series, where output of one elemen
- is the input for next element pipelining.involves reusing

hardware optimally based on dataflow. Pipelining i
categorized in
1. Linear pipelines: A linear pipeline processor is a
weries of processing stages and memory access.
2. Non-linear pipelines: Also, called dynamic
pipeline can be configured to perform various
functions at different times. There is also feed-
forward and feed-back connection. It also allows
very long instruction word.
Yector Processor: In computing a vector processor is a
central processing unit that implements an instruction set
containing instruction that operate on 1-D arrays of data
called vectors. There is a class of computational problems
that are beyond the capabilities of the conventional
computers. A computer capable of vector processing
eliminates the overhead associated with the time it takes
to fetch and execute the instructions in the program loop.
Array Processor: An array processor is a processor that
performs the computations on large arrays of data.
There are two different types of array processor :
1. Attached array processor: Its purpose is to
enhance the performance of the computer by
providing vector processing. It achieves high
performance my means of parallel processing with
multiple functional units.
2. SIMD array processor: It is processor, which
consists of multiple processing unit operating in

0 as the numbe

f—

{CA0.27)

Another important aspect is that an arithmetic
pipeline may be nonlinear. The “stages” in this type of
pipeline are associated with key processing components
such as adders, shifters, etc. Instead of a steady
progression through a fixed sequence of stages, a task in
a nonlinear pipeline may use more than one stage at a
time, or may return to the same stage at several points in
processing.

Example of an arithmetic pipeline
Suppose that we want to perform the combined
multiply and add operations with a stream of numbers.
Ai*Bi+Cifori=12,3,..,7

It can be impl d with the foll
pipeline:
A Bi Ci
R1 R2
Pudbplier
- Ra
_ =]

) weea

The pipeline would work as follows:

Clock Segment 1 Segment 2 Segment 3
Pulse
Number | RJ Rz R R4 RS
1 Al Bl - - -
2 A2 B2 AlI*Bl Cl =
3 A3 B} A2*BY [=r] AlI*BI+C]|
4 Ad B4 A3*B3 C! A2*BIHC2
3 AS___BS Ad*Bd C. A3*BI+C;
e A6 B6 AS*BS CS AdTBI+CA
| AY B A6"B6 Ci ASBS+CS
[- AT'BT C AG*BGHC6
= i - P | . - ATPBI+CT
o
@ Explain stack organization of Central Processing
Unit. [RTU. 2015)

Ans. A CPU stack is a register stack. Consider the
organization of a 64-word register stack in a CPU as
illustrated in the figure below:

.

B.Tech, (VI Sem.) C.5. Solved Papers
{

GxEDS

Fou =1
when stack is full

Address

EMPTY = 1
when stack is empty

3
Stack Pointer (5p). [} — P98

{consists of 6 bits) xvZ &

ABCD 3

o

Holds the data to be pushed
onte stack or that is popped oif

from the stack

Fig.
¢ The four separate registers used in the stack
organization are :)
1. Stack Pointer Register (SF), contains a value in
binary each of 6 bits, which is the address of m,.n
top of the stack. Here, the stack pointer SP contains
6 bits because 2¢ = 64, and SP cannot contain &
value greater than 111111 i.e. value 63. When SP
contains the address 63 and it is incremented by |,
then SP= 111111 + 1 = 1000000; the most significant
| will be truncated as the carry and SP be left
with the value 0. N
Similarly when SP will contain the value 0 and itis
decremented by 1, then the result willbe 1111 _,_
2. FULL register, which can store 1 bit information.
It is set to | whien the stack is full.)
3. EMPTY register, which can store | bit information.
It is set to | when stack is empty.
4. Data Register (DR), which holds the data to be
written into or to be read from the mﬁnww)
Following are the micro-operations associated with
the stack : .

Initialization Conditions:-
SPBO // set stack pointer .o.c.))
EMPTY P | //set EMPTY to | asinitially .uSnr is empty
FULL B 0 / clear FULL to 0 as stack contains no element
PUSH Operatio ,
SPBSP+1 / Stack Pointer is Gn.ﬂ-:n.:.nn_.
MISP] p DR // Data from DR register is written at top

of stack

1 (SP==0) then (FULL B 1) "

Checking if Stack is FULL;
Stack becomes 0 after 63

EMPTY B0 // Mark that stack is not empty

re, stack pointer is incremented so that it can
va::.r_u._.n:o uan_.nmmn%.En next higher word. ?:w.m_ refers
1o the memory location addressed by the value in 8P. So
the statement M[SP) B DR writes the data from the data
register DR to the top of stack. ,

As initially the value of SP is 0, so the _.z.m.ﬁ word is
written into stack after incrementing SP at location 1 and
the last word will be written at addres 0. Thus the stack
will become full when SP contains the address 0, and then
the register FULL will be setto 1.

When PUSH operation is performed, the stack
doesn’t remain empty and hence the register EMPTY is
cleared to 0.

POP Operation :

DR B M[SP] // Read an item from top of stack
SP B SP-1 /I Decrement stack pointer

If (SP==0) then (EMPTY B 1) // Check if stack is empty
FULLpBO // Mark the stack as not full

For the POP operation, the data stored at the top
of the stack is read into the data register DR and the
stack pointer is then decremented to point to the lower
address word. The data which is read is not actually
deleted from top of the stack, it remains there, but after
the next PUSH operation, itis overwritten. If the value of
stack pointer SP becomes 0, then it means that the stack
is empty and hence the register EMPTY is setto 1. Also
after a POP operation the value of FULL register is cleared
1o 0 as the stack is not full and can accommodate more
da.a items,

What are the different conflicts that will arise in
pipeline? How do you remove the conflict?
Describe. [R.T.U. Dec. 2013/

Ans. Pipeline Conflicts : In general, there are three
major difficulties that cause the instruction pipeline to derive
from its normal operation. These pipeline conflicts are -

1. Resource conflicts

2. Data dependency conflicts

3. Branch difficulties .

1. Resource Conflicts : Resource conflicts caused
by access to memory by two segments at the same time.

2. Data Dependency Conflicts : Data dependency
conflicts arise when an instruction depends on the result
of a previous instruction, but this result is not yet available.

3. Branch Difficulties : Branch difficulties arise
from branch and other instructions that change the value
of PC

(c A and

A& 7
Removing Pipeline Canflicts

1. Resource Conflicts : Most of these conflicts
can be resolved by using separate instruction and data
memories.

2. Data Dependency Conflicts : Pipelined
computers deal with such conflicts in a variety of ways :

(i) Hardware Interlocks : The most straight
forward method is to insert hardware interlocks. An
interlock is a circuit that detects instructions whose source

p ds are d ns of ions farther up in the
pipeline. Detection of this situation causes the instruction
whose source is not available to be delayed by enough
clock cycles to resolve the conflict. This approach
maintains the program sequence by using hardware tq
insert the required delays.

(ii) Operand Forwarding : Another technique
called operand forwarding uses special hardware to
detect a conflict and then avoid it by routing the data
through special paths between pipeline segments. For

example, instead of transferring an ALU result into a .

destination register, the hardware checks the destination
operand, and if it is needed as a source in the next
instruction, it passes the result directly into the ALU input,
by passing the register file. This method requires additional
hardware paths through multiplexers as well as the circuit
that detects the conflict

(iii) Delayed Load : A procedure employed in some
compulers is to give the responsibility for solving data
conflicts problems to the compiler that translates the high-
level progr language into a hine languag

program. The compiler for such computers is designed to
detect a data conflict and reorder the instructions as
necessary (o delay the loading of the conflicting data by
inserting no-operation instructions. This method is referred
to as delaved load.

3. Branch Conflicts : Pipclined computers employ
various hardware technique to minimize the performance
degradation caused by instruction branching.

(i) Prefetch Target Instruction : One way of
handling a conditional branch is to prefetch the target
instruction in addition to the instruction following the
branch. Both are saved until the branch is executed. If
the branch conditiodl is ful, the pipeline continues
from the branch.target instruction. An extension of this
procedure is to continue fetching instructions from both
places until the branch decision is made. At that time,
control chooses the instruction stream of the correct
program flow.

{CAOD.29

(ii) Branch Target Buffer : Another possibility is
the use of a branch target buffer or BTB. The BTB is
an associative memory included in the fetch segment of
the pipeline. Each entry in the BTB consists of the address
of a previously executed branch instruction and the target
instruction for that branch. It also stores the next few
instructions after the branch target instruction. When the
pipeline decodes a branch instruction, it searches the
associative memory BTB for the address of the instruction
Ifitis inthe BTB, the instruction is available directly and
prefetch continues from the new path. If the instruction is
not in the BTB, the pipeline shifts to a new instruction
stream and stores the target instruction in the BTB. The
advantage of this scheme is that branch instructions that
have occurred previously are readily available in the
pipeline without interruption.

(iii) Loop Buffer : A variation of the BTB is the
loop buffer. This is a small very high speed register file
maintained by the instruction fetch segment of the pipeline
When a program loop is detected in the program, it is
stored in the loop buffer in its entirety, including all
branches. The program loop can be executed directly
without having 10 access memory until the loop mode is
removed by the final branching out

(iv) Branch Prediction : Another procedure that
some computers use is branch prediction pipeline with
branch prediction and uses some additional logic to guess
the arrival of a conditional branch instruction before it is
executed. The pipeline begins prefetching the instruction
stream from the predicted path. A correct prediction
eliminates the wasted time caused by branch penalties

(v) Delayed Branch : A procedure employed in most

RISC processors is the delayed branch. In this procedure,
the compiler detects the branch instructions and rearranges
the machine language code sequence by inserting useful
instructions that keep the pipeline operating without
interruptions. An example of delayed branch is the insertion
of a no-operation instruction after a branch instruction.
This causes the computer to fetch the target instruction
during the execution of the no-operation instruction,
allowing a cor flow of the pipel:

Q.14 What do you mean by parallel processing? Write
the Flynn's classification of parallel proeessing.
[RT.U: 2013

Ans. Parallel Processing is a term used to denote a
large class of techniques that are used o provide

Computer An-hn'tecture and Dr‘gqnlsation

Shift Register: It 0
time while register with
bits of the words simult

Para.llcl processing at a higher level of complexity
can be achieved by having a multiplicity of functional unit

that performs identical or different operations
simultaneously.

Perates in serial fashion | bitata

parallel load operates with all the
aneously.

-

Parery R W

Prcesnt N e
P\%‘MS

Fig. : Process with Multiple Functional Uni.l)
Parallel Processing Unit is established by distinguish
the data among the multiple functional units.
For example '

o8 ART AmLe
ot

e,

— ContoL

o
' o x

Lowe

Shiet

Fig. : Block diagram of Process units

PaArT-C

at is addressing mode? Explain the direct and
indirect register addressing modes with suitable

examples. IRT.U. 2017}

T

{CAO0.31)

OR
Explain direct and indirect register addressing
modes with suitable examples. [R.T.U. 2015)
OR

What is addressing mode? Explain different
addressing modes with suitable examples.
IR.T.U. Dec. 2013/

Ans. Addressing Modes : The term addressing modes
refers to the way in which the operand of an instruction is
specified. The addressing mode specifies a rule for
interpreting or modifying the address field of the instruction
before the operand is actually executed

The operation field of an instruction specifies the
operation to be performed. This operation will be executed
on some data which is stored in computer registers or the
main memory. The way any operand is selected during
the program execution is dependent on the addressing

mode of the instruction. The purpose of using addressing
modes is as follows:

(i) Togive the programming versatility to the user.
(i) Toreduce the
of instruction.

Types of Addressing Modes :
of addressing modes:

1. Implied Mode : In this mode the operands are
specified implicitly in

the definition of the instruction. In
fact, all register reference instructions that use an
accumulator are implied-mode instructions. Zero-address
instructions in a stack-organized computer are implied-

mode instructions since the operands are implied to be on
top of the stack.

number of bits in addressing field

There are different types

Opcode Mode Address

Fig. 1 : Instruction Sformat with mode Sleld

2. Immediate Mode : In this mode the operand s
specified in the instruction itself. In other words, an
immediate mode instruction has an operand field rather
than an address field. The operand field contains the actual
operand to be used in conjunction with the operation
specified in the instruction. Immediate mode instructions
are useful for initializing registers to a constant value.

3. Register Mode : In this mode, the operands are in
registers that reside within the CPU. The particular
register is selected from a register field in the introduction.
A k-bit field can specify any one of 2* registers.

4. Register Indirect Mode : In this mode the instruction
specifies a register in the CPU whose contents give the

2200220220020 002P0P0P00P021%°1°"

L TS TN N A L e | e T W e

address of the operand in memory. In other words the
selected register contains the address of the operand rather
than the operand itself. Before using a register indirect
mode instruction, the programmer must ensure that the
memory address of the operand is placed in the processor
register with a previous instruction. A reference of the
register is then equivalent to specifying a memory address.
The advantage of a register indirect mode instruction is
that the address field of the instruction uses fewer bits-
to-select from a register than would have been required
to specify a memory address directly.

5. Auto-increment or Auto-decrement Mode : This
is similar to the register in direct mode except that the
register is incremented or decremented after (or beiore)
its value is used to access memory. When the address
stored in the register refers to a table of data in memory,
it is necessary to increment or decrement the register after
every access to the table. This can be achieved by using
w_._n increment or decrement instruction. However, because
it is such a common requirement, some computers

incorporate a spread mode that automatically increments

or decrements the content of the register after data

access.

The address field of an instruction is used by the

control unit in the CPU to obtain the operand from memory.
Sometimes the value given in the address field is the
address of the operand, but sometimes it is just an address
from which the address of the operand is calculated. To
differentiate among the various addressing modes it is
necessary to distinguish between the address part of the
instruction and the effective address used by the control
when executing the instruction. The effective address is
defined to be the memory address obtained from the
compution dictated by the given addressing mode.The
effective address is the address of the operand in a
computational type instruction. It is the address where
control branches in response to a branch-type instruction.
6. Direct Address Mode : In this mode the effective
address is equal to the address part of the instruction.
The operand resides in memory and its address is given
directly by the address field of the instruction. In a branch-
type instruction the address ficld specifies the actual branch
address.
7. Indirect Address Mode : In this mode the address
field of the instruction gives the address where the
effective address is stored in memory. Control fetches
the instruction from memory and uses its address part to
access memory again to read the effective address.

A few addressing modes require that the address
field of the instruction can be added to the content ofa
specific register in the CPU. The effective m&wnmm in these
modes is obtained from the following computation:

——{(B.Tech. (VI Sem.) C.S. Solved Papers)

Effective address = Address part of instruction + Content
of CPU register.
The CPU register used in the computation may be
the program counter, an index register or a base register.
In either case we have a different addressing mode which
is used for a different application.
8. Relative Address Mode : In this mode the content
of the program counter is added to the address part of the
instruction in order to obtain the effective address. The
address part of the instruction is usually a signed number
(in 2°s complement representation) which can be either
positive or negative. When this number is added to the
content of the program counter, the result produces an
effective address whose position in memory is relative to
the address of the next instruction.
9. Indexed Addressing Mode : In this mode the content
of an index register is added to the address part of the
instruction to obtain the effective address. The index
register is special CPU register that contains an index
value. The address field of the instruction defines the
beginning address data array in memory. Each operand in
the array is stored in memory relative to the beginning
address. The distance between the beginning address and
the address of the operand is the index value stored in the
index register. Any operand in the array can be accessed
with the same instruction provided that the index register
contains the correct index velue. The index register can
be incremented to facilitate access to consecutive
operands. If an index-type instruction does riot include an
address field in its format, the instruction converts to the
register indirect mode of operation. ,
10. Base Register Addressing Mode : In this mode
the content of a base register is added to the address part
of the instruction to obtain the effective address. This is
similar to the indexed addressing mode except that the
register is now called a base register instead of an index
register. The difference between the two modes is in the
way they are used rather than in the way that they are
computed. An index register is assumed to hold an index
number that is related to the address part of the instruction.
A base register is assumed to hold a base address and the
address field gives a displacement relative to this base
address. The hase register addressing mode is used in
computers to facilitate the relocation of programs in
memory. When programs and data are moved from one
segment of memory to another, as required in
multiprogramming systems, the address values of
instructions must reflect this change of position. With a
base register, the displacement values of instructions do
not have to change. Only the value of the base register

_ T Archi e and Or),

requires updating to reflect the beginning o
segment.
Numerical Example

To show the differences between the various modes
we will show the effect of the addressing modes on :6.
instruction defined in Fig. 2. The two-word instruction at
address 200 and 201 isa “load to AC” instruction with an
address field equal to 500. The first word of the instruction
specifies the operation code and mode and the second
word specifies the address part. PC has the value 200 for
fetching this instruction. The content of processor register
R1 is 400 and the content of an index register XR is 100.
AC receives the operand after the instruction is executed.
The figure lists a few pertinent addresses and shows the
memory content at each of these addresses.

ew memory

The mode field of the instruction can specify any

one of a number of modes. For each possible mode we
calculate the effective address and the operand that must
be loaded into AC. In the direct address mode, the
effective address is the address part of the instruction
500 and the operand to be'loaded into AC is 800.

In the immediate mode the second word of the
instruction is taken as the operand rather than an address,
50 500 is loaded into AC. (The effective address in this
case is 201.) In the indirect mode the effective address is
stored in memory at address 500. Therefore, the effective
address is 800 and the operand is 300, In the relative mode
the effective address is 500 + 202 = 702 and the operand
is 325. (Note that the value in PC after the fetch phase
and during the execute phase is 202.)

Address Memory
PC =200 200 Load to AC |Mode]
201 Address = 500

Next Instruction

| ac]

XR =100
399 450
C 400 700
500 800
600 900
702 325
800 300

Fig. 2: Numerical example for addressing modes

—{(CA0.33)

In the index mode the effective ad S

XR + m.oo =100 + 500 = 600 and the operand M,,.%Mm “”
J_E register mode the operand is in R1 and 400 is __cE._on
into >h.n (There is no effective address in this case.) In
the register indirect mode the effective address is Ncc
nncj_ to the content of R1 and the operand loaded ::m
>0. is 700. The autoincrement mode is the same as the
register indirect mode except that R1 is incremented to
401 after the execution of the instruction. The
autodecrement mode decrements R1 to 399 prior to the
execution of the instruction, The operand loaded into AC
1s now 450. Table shows the values of the effective
address and the operand loaded into AC for the nine
addressing modes.

Tuble : Tubular list of numerical example

Addressing Mode | Effective Address | Content of AC
Direct address 500 800
Immediate operand 201 500
Indirect address 800 300
Relative address 702 325
Indexed address 600 900
Register - 400
Register indirect 400 700
Autoincrement - 400 700
Autodecrement 399 450

E.g. of direct addressing mode:
LDA addr. This is an ALP statement ADDR in operand
field is a symbolic name given to 16-bit address. The
systematic name given to 16-bit address symbolic name
can be chosen by the user either reference to context
_...D,» is the mnemonic for LOAD accumulator direct. The
instruction format for this is as shown.

Opcode N
<By> N+1
<B;> N+2

Where the memory location ‘N’ contains the
opcode namely 00 110 010 = (3A), followed by a lower
order 8-bits of address <B,> and higher order 8-bit of
address <B;> at memory location NH&N+2 respectively.
The meaning of instruction is load the accumulator from
"._5 memory location whose address is available directly,
in the instruction itself. The macro RTL implemented is,

o (A) « M(B,, B,)
This is symbolic representation, Only one operand is
involved in the instruction e execution.
Example of indirect addressing mode:
Example: ADD (A), RO

(address A is embedded in the instruction code

and (A) is the operand address = painter variable)

CAO.34)—

18 What is the advantage of pipelining? Explain
instruction pipeline in detail. [R.T.U. 2015/
OR
Why do we require instruction pipelining ?
Explain its working procedure. Discuss the
pipeline performance measures.
[R.T.U. 2017, Dec. 2013]

Ans. Pipelining : Pipelining is a technique of decomposing
a sequential process into suboperations with each
subprocess being executed in a special dedicated segment
that operates concurrently with, all other segments. A
pipeline can be visualized as a collection of processing
segments through which binary information flows.

Each segment performs partial processing dictated
by the way the task is in partitioned. The result obtained
from the computation in each segment is transferred to
the next segment in the pipeline. The final result is obtained
after the data have passed through all segments. The name
“pipeline” implies a flow of information analogous to an
industrial assembly line. It is characteristic of pipelines

s that several computations can be progress in distinct

segments at the same time.
Instruction Format : The basic computer has three
instruction code formats. Each format has 16 bits. The
operation code (opcode) is a part of the instruction contains
three bits and the meaning of the remaining 13 bits depends
on the operation code encountered.
Types of Instruction

1. Memory-reference instruction

2. Register-reference instruction

3. Input/output instruction

15 14 12 11 0
ﬁ I _ Opecode _ >nn:uu|‘ abbnonnlaconranmu__ 1)

(a) Memory-reference instruction
15 14 12 11 0

ﬁ 0 — N | _ﬁh.onmnﬁaavn.h:o-. (Opcode = 111,1=0)

() Register-reference instruction
[} 12 11 0

r__ 1o _ 503..5:.1_63&«":_._-:

(c) Inpur-output instruction
Fig. 1: Instruction format .
A g._dmnﬂsn instruction uses 12 bits to specify
an address and one bit to specify the addressing mode 1.1
is equal 10 0 for direct address and to | for indirect address.

—{(B.Tech. (VI Sem.] C.5. Solved Papers)
The register-reference instructions are recognized by the
operation code 111 with a 0 in the leftmost bit (bit 15) of
the instruction. A register reference instruction specifies
an operation on or a test of the AC register. An operand
fron: memory is not needed therefore, the other 12 bits
are used to specify the operation or test to be executed.
Similarly, an input-output instruction does not need a
reference to memory and is recognized by the operation
code 111 witha 1 in the lefimost bit of the instruction. The
remaining 12 bits are used to specify the type of input-
output operation or test performed.

The type of instruction is recognized by the computer
control from the four bits in the positions 12 through 15 of
the instruction. If the three opcode bits in the positions 12
through 14 are not equal to 111, the instruction in amemory-
reference type and the bit in position is 15 taken as the
addressing mode I.

If the 3-bit opcode is equal to 111, control then
inspects the bit in position 15 Ifthe bit is 0, the instruction
is a register-reference type. If the bit is 1, the instruction
is an input-output type. Note that the bit in position 15 of
the instruction code is designated by the symbol I but is
not used as a mode bit when the operation code is equal
tolll.

Only three bits of the instruction are used for the
operation code. It may seem that computer is restricted
to a maximum of eight distinct operations. However, since
the register-reference and input-output instructions use
the remaining 12 bits as a part of the operation code, the
total number of instructions can exceed eight. In fact, the
total number of instructions choosen for basic computer
are 25. ’
Instructions Formats

Three-Address Instructions : Computers with
three-address instruction formats can use each address
field to specify either a processor register or a memory
operand. The program in assembly language that
evaluates X = (A + B) * (C + D) is shown below, together
.with comments that explain the register transfer operation
of each instruction.

ADDRIL, A, B R1«M[A] + M[B]

ADD R2, C, D R5«M[C] + M[D]

MUL X, R1, R2 M[X]«R1*R2

It is assumed that the computer has two processor
registers, Rl and R2. The symbol M[A] denotes the
operand at memory address symbolized by A.

The advantage of the three-address format is that it
results in short programs when evaluating arithmetic
expressions. The disadvantage is that the binary-coded

\

(Gompaier 77 T e

instructions require too many bits to specify three
addresses. An example of a commercial computer that
uses three-address instructions is the Cyber :o..._.__n
instruction formats in the Cyber computer are _..nm:_.n.nn
to either three register address fields or two register
address fields and one memory address field.

Two-Address Instructions : .“.Eo.maaqn.u.m
instructions are the most common in moa......mqnpu_
computers. Each address field can specify either a
processor register or a memory word. The program to
evaluate X =(A + B) * (C + D) is as follows :

e and Or,

MOV R1,A RI+M[A]

ADD RL B R1«<RIl + M[B]
MOV R2, C R2<M[C)

ADD R2, D R2«P2+M[D]
MUL RL,R2 RI<RI*R2

MOV X,R1 M[X]«<R1 .

The MOV instruction moves or transfers the
operands to and from memory and processor registers.
The first symbol listed in an instruction is assumed to be
both a source and the destination where the result of the
operation is transferred.

One-Address Instructions : One-address
instructions use an implied accumulator (AC) register for
all data manipulation. For multiplication and division, there
is a need for a second register. However, here we will
neglect theé second register and assume that the AC
contains the result of all operations. The program to
evaluate X=(A +B)* (C+D)is

LOAD A ACM[A]
ADD B AC—A[C] + M[B]
STORE T M[T]—AC
LOAD C ACeM[C]
ADD D RC—AC + M[D]
MUL T AC—AC*M[T]
STORE X M[X]«AC
All operations are done between the AC register and

a memory operand. T is the address of a temporary
memory location required for storing the intermediate
result. :

Zero-Address Instructions : A stack-organized
computer does not use an address field for the instructions
ADD and MUL. The PUSH and POP instructions,
however, need an address field specify the operand that
communicates with the stack. The following program
shows how X = (A + B) * (C + D) will be written for a
stack-organized computer. (TOS stands for top of stack.)

PUSH | A ? IO m
" PUSH B |TOS«B I
ADD | TOS«(A+ B) S
PUSH C [TOS<C o
ST T B
PUSH | D | TOS«D o —
ADD TOS«(C + D) ll#
MUL TOS«(C+D)*(A+B) -
POP X | M[X]«<TOS |

I1SC Instruction : The instruction set of a typical

RISC processor is restricted to the usc of load u:MCm_.Mn_n_
instructions communicate between memory and C { 70 -
other are executed within the registers of the CPU i:ﬂ m.._u
referring to memory. A program for x._mn. type :
consists of LOAD and STORE instructions. That have
one memory and address registers with all three specifying
processor registor.

LOAD R1,A R1+ M[A]
LOAD R2.B R2 « M[B]
LOAD R3,C R3 « MI[C]
LOAD R4.D R4 « M[D]
-ADD R1,R2, R3 Rl« R2+R3
ADD R3, R3,R4 R3 « R3+R4
MUL R1.RI,R3 Rl RI+R3
STORE X, R1 M[X] « RI

Instruction Pipeline : Pipeline processing can occur
not only in the data stream but in the instruction stream as
well. An instruction pipeline reads consecutive instructions
from memory while previous instructions are being
executed in other segments. This causes the instruction
fetch and execute phases to overlap and perform
simultaneous operations. One possible digression
associated with such a scheme is that an instruction may
cause a branch out of sequence. In that case the pipeline
must be emptied and all the instructions that have been
read from memory after the branch instruction must be
discarded.

Consider a computer with an instruction fetch unit
and an instruction execution unit designed to provide a
two-segment pipeline. The instruction fetch segment can
be implemented by means of a first-in, first-out (FIFO)
buffer. This is a type of unit that forms a queue rather
than a stack. Whenever the execution unit is not using
memory, the control increments the program counter and
uses its address value to read consecutive instructions from
memory. The instructions are inserted into the FIFO buffer
so that they can be executed on a first-in, first-out basis.
Thus an instruction stream can be. placed in a queue,
waiting for decoding and processing by the execution

ENNENEEBEETEEEEEEEEKKX)

_instruction and whenever the memory is available, the
fourth and all subsequent instructions can be fetched and
ootovad in an instruction FIFO. Thus, up to four |

(CAO.36 —

segment. The instruct
Provides an efficient w
time to memory for reg

10N stream queuing mechanism
ay for reducing the average access
ding instructions. Whenever there
uffer, the control unit initiates the
phase. The buffer acts as a queue

€Xxecution unit,

C : . :
omputers with complex mstructions require other

following sequence of steps ;
1. Fetch the instruction from memory
2. Decode the instruction”
3. Calculate the effective address
4. Fetch the operands from memory
5. Execute the instruction
6. Store the result in the proper place
There are certain difficulties that wil] Pprevent the

Instruction pipeline from operating at its maximum rate.

Different Segments may take different times to operate
the incoming _.=wo:ﬁm:.o:. Some segments are skipped for
certain operations. For example, a register transfer mode
Instruction does not need an effective address calculation.
Two or more segments may require memory access at
@_o same time, causing one segment to wait until another
is mn_m.rma with the memory. Memory access conflicts are
sometimes resolved by using two memory buses for
accessing instruction and data in separate modules. In this
way, an instruction word and a data word can be read
simultaneously from two different modules.

The design of an instruction pipeline will be most’
efficient if the instruction cycle is divided into segments
of equal duration. The time that each step takes to fulfill
its function depends on the instruction and the way it is
executed. ¥

Four-Segment Instruction Pipeline : Assume that
the decoding of the instruction can be combined with the
calculation of the effective address into one segment.

Assume further that most of the instructions place
the result into a processor register so that the instruction
execution and storing of the result can be combined into
one segment. This reduces the instruction pipeline into
four segments. .

Fig. 2 shows how the instruction cycle in the CPU
can be processed 'with a four-segment pipeline. While an
instruction is being executed in segment 4, the next
instruction in sequence is busy in mﬂnE:m an operand from
memory in segment 3. The mwmm.o:(..o m_...aqnmm may .vm
calculated in a separate arithmetic circuit for the third

: Ikruw“@n!: (VI Sem.) C.S. Solved Papers)
m:u.ovan_.:o:m in the instruction cycle can overlap and y

to four different instructions can be in progress of vn..:n
processed at the same time. m

Sepment 1;

Segment 2:

[Fig. 2 ; Four-segment CPU pipeline
Once in a while, an instruction in the sequence may
be a.program control type that'causes a branch out of
normal sequence. In that case, the pending dperations in
the last two segments are completed and all information
stored in the instruction buffer is deleted. The pipeline
then restarts from the new address stored in the v..o.,m_.wa.
counter. Similarly, an interrupt request, when
acknowledged, will cause the pipeline to empty and start
again from a new address value. ' :
Table : Timing of instruction Pipeline

Step : 12 13 14 [5J6 [1]8 [9 [0 1L[12]i3
Instruction : |1 _|FI |DA[FO|EX

2 FI_|DA[FO [EX
(Branch) |3 FI _|DA|FO[EX

4 FlI]- |- [FI |DAJFOJEX

3 - |- |- [FI |DAJFO[EX

6 FI_|DA|FO |EX

7 FI |[DAJFO[EX

Table shows the operation of the instruction pipeline.
The time in the horizontal axis is divided into steps of equal
duration. The four segments are represented in the diagram
with an abbreviated symbol. :

1. F1 is the segment that fetches an instruction.

. 2. DA is the segment that decodes the instruction and

calculates the effective address.

Computer Architecture and Organisation e
_ 7

3. FO is the segment that fetches the operand.
4, EX is the segment that executes the instruction.
It is assumed that the processor has separate
instruction and data memories so that the operation in FI
and FO can proceed at the same time. In the absence of
a branch instruction, each segment operates on different
instructions. Thus, in step 4, instruction 1 is being executed
in segment EX; the operand for instruction 2 is being
fetched in segment FO; instruction 3 is being decoded in
segment DA and instruction 4 is being fetched from
memory in segment FI.
Assume now that instruction 3 is a branch instruction.
As soon as this instruction is decoded in segment DA in
step 4, the transfer from FI to DA of the other instructions
is halted until the branch instruction is executed in step 6.
Ifthe branch is taken, a new instruction is fetched in step 7. -
Ifthe branch is not taken, the instruction fetched previously
in step 4 can be used. The pipeline then continues until a
new branch instruction is encountered.
Another delay may occur in the pipeline if the EX
segment needs to store the result of the operation in the
data memory while the FO segment needs to fetch an
operand. In that case, segment FO must wait until segment
EX has finished its operation. ,
In general, there are three major difficulties that
cause the instruction pipeline to deviate from its normal
operation. 5 e
1. Resource conflicts caused by access to memory by
two segments at the same time. Most of these conflicts
can be resolved by using separate instruction and data
memories. C

2. Data dependency conflicts arise when an wzmﬁ:o:o.z
depends on the result of a previous instruction, but this
result is not yet available,

3. Branch difficulties arise from branch and other
instructions that change the value of PC.

Advantages of Pipelining

e The cycle time of the processor is reduced, thus
increasing instruction issue-rate in most cases.

e Some combinational circuits such as address or
multipliers can be made faster by adding more
circuitry. If pipelining is used instead, it can save
circuitry. :

Q.19 Explain the differences between RISC and CISC
compulers. [RTU. 2017]

OR
Is there any difference between RISC and CISC
computers? Explain. JR.TU. 2015]

; OR
Give the difference between RISC and CISC
processor. Describe in detail. [R.TU. Dec. 2013]
S ——

L e T e e £ B = T

Rl =S

N

v~

00001-| 9
00001
000010

4.-——-——-’---1 '

i S ———

00010~ 8

e o rines of

00010-
060100

00100-| 7

e e

)00 100~
001000

01000-| 6
01000~
9010000

010000-] 5
010000
0100000

100000-| 4
100000~
1000000

000000 3
000000—
10000001

AS 818N 01
A = + ve setl
Q0] = 1
Step-10 ,
LS(AQ)

(SAVAVIVIPLV RN RV AVE R RVIVIVIVIVIVERVIVE N EINRVIVIVIVIVIV R RV R

0000001100! 00000100111]000000101—

L)__ A~ M 100000011001[00000001110{000000101-
As sign of ~100000011001{00000001110[0000001011) 0
A = tve set

Q[0] = |

From the above result; we see that quotient = Q
= 1011 =11 and remainder=A=1110 = 14.

PDraw and explain flow chart for addition and

subtraction of floating points numbers.

[R.T.U. 2017, 2016]

Ans, Addition and Subtraction :° -

During addition or subtraction the two floating-point
operands are in AC and BR. The sum or difference is

" formed inthe AC. The algonthm can be dmded mto four
consecutive parts : | :

1. Check for zeros

2. Align the mantissas

3. Add or subtract the mantissas

4. Normalize theresult.

A ﬂoatmg point number that i is zero cannot be
normalized. We check for zeros at the’ beginning and .
terminate the process if necessary. The alignment of the -

- mantissas must be carried out prior to their operation, After
the mantissas are added the flowchart for adding and
subtracting two floating point binary numbers is shown in
figure. If BR is equal to zero, the operation is terminated,
with the value in the AC being the result. IfFAC is equal to
zero, we transfer the content of BR in AC and also
complement its sign if the number are to be subtracted. If
neither number is equal to zero we proceed to align the
mantissas.

The magnitude comparator attached to exponent a
~and b provides three outputs that indicate their relative -
magnitude. If the two exponent are equal then the
operation will be performed. if the exponents are not equal, -

M..‘

~(B.Tech. (VI Sem.) C.S. Solvec

(CAO.42)—

the mantissa having the smaller exponent is shifted to the
right and its exponent incremented. The addition and
subtraction of the two mantissas is identical to the fixed
point addition and subtraction but if overflow occurs when
magnitudes are added, it is transferred into flip-flop E. If
E = | the bit is transferred into A, and all other bits of A
are shifted right. The exponent must be incremented to
maintain the correct number. If the magnitudes were
subtracted, the result may be zero or may have an
underflow. If the mantissa is zero, the entire floating point
number in the AC is made zero. The mantissa has an
underflow if the most sxgmﬁcant bit in position A, is 0. In
this case, the mantissa is shifted left and the exponent
decremented. The bit in A, is checked again and the

process.

Add or Subtract

=0

EA—A+B

AeA+]
AJ@E'

~+ShlA
| ae=a=1 |

Fig. : Addition and subtraction of floating point number

Q9 Mi!e short note on priority interrupt.-
[RTU. 2017/

f\“s' Data transfer between the CPU and /O «
initiated by the CPU. However, the CPU cannot
transfer unless the device is ready to communic
the CPU. There is also a possibility that several
will requires service simultaneously. In this case th
must also decide which device will get the servi
A priority interrupt is a system that estab
priority over the various sources to determine
condition is to be serviced first when two or more 1
arrive simultaneously. The system may also de
which conditions are permitted to interrupt the cc
while another interrupt is being serviced. Higher
interrupt levels are assigned to request which if ¢
or interrupted, could have serious consequences. [
with high speed transfer such as magnetic disks ar
high priority and slow devices such as keyboard re
low priority. When two devices interrupt the com
at the same time, the computer services the devic
higher priority first.

Establishing the priority of simultaneous int
can be done by software or hardware. The sof
priority interrupt identifies the highest priority sou
software means such as polling. In polling method
is one common branch address for all interrupts
programs that take care of interrupts begins at the b
address and polls the interrupt sources in sequence

order in which they are tested determines the prior
each interrupt. The highest priority is tested first :
the interrupt signal is on, control branch prowde the se
to that source, otherwise the next lower priority sou
tested and so on. The disadvantage of the software me
is that if there are many interrupts, the time requir
poll them can exceed the time available to service th
device. The hardware priority interrupt unit functio
an overall manager in an interrupt system environme
accept interrupt request from many sources, determ
which of the incoming request has the highest pnont)
issues interrupt request.

€.10 Write short note on IOP processor.
[R.T.U. 2017, 2

Ans. Instead of having each interface communicate v
the CPU, a computer may incorporate one or more extel
processors and assign them the task of communicat
directly with all I/O devices. An input—output proces
(IOP) may be classified as a processor with direct mem
acces : capability that communicates with 1/O devices

“this configuration, the comptiter system can be divic
- into a memory unit, and a number of processors compri

of the CPU and one or more [OPs. Each TOP takes ¢

-

{CAO0.43)

data words from many different sources. For example, it
may be necessan to take four bytes from an input device
and pack them into 32-bit word before the transfer to
memory. Data are gathered in the I0P at the device rate
and bit capacity while the CPU is executing its own
program. After the input data are assembled into a memory
word. they are transferred from IOP directly into memory
by “stealing” one memory cycle from the CPU. Similarly,
an output device at the device rate and bit capacity.
The communication between the IOP and the devices
attached to it 1s similar to the program control method of
transfer. Communication with the memory is similar to
the direct memory access method. The way by which
the CPU and IOP communicate depends on the level of
sophistication included in the system. In very large scale
computers, each processor is independent of all others
and any one processor can initiate an operation. In most
computer system, the CPU is the master while the IOP is
slave processor. The CPU is assigned the task of initiating
all operations, but I/O instructions are executed in the IOP.
CPU instruction provide operation to start an IO transfer
and also to test I/O status conditions needed for making
decisions on various /O activities. The IOP, in tum typically
asks for CPU attention by means of an interrupt. It also
responds to CPU requests by placing a status word in a
prescribed location in memory to be examined later bya
CPU program. When an I/O operation is desired the CPU
informs the [OP where to find the /O program and then
leaves the transfer detail to the 1OP,

ist various commands that an interface may
receive from control line of the bus. Explain the
process of handling an interrupt that occurs
during the execution of a program, with the help
of an example. [R.T.U. 2016}
_———
Ans. List of commands line: There are 4 types of
commands that an interface may receive:
1. Control command: This command is issued to activate
the peripheral and to inform it what to do? E.g., magnetic
tape unit may be instructed to backspace tape by one
record.
2. Status command: This command is used to check the
various status conditions of the interface before a transfer
is initiated.
3. Data Input command: This command causes the
interface to read the data from the peripheral and places
it into the interface buffer. Processor checks if data are
available using status command and then issues a data
input command, The interface places the data on data
lines, where the processor accepts them.

(cA0.43)—

4. Data Output command: This command causes the
interface to read the data from the bus and saves it into
the interface buffer.

Handling an interrupt that occurs during the
execution of a program: On the occurrence of an
interrupt, an interrupt request (in the form of a signal) is
issued to the CPU. The CPU on receipt of interrupt request
suspends the operation of the currently executing program,
saves the context of the currently executing program and
starts executing the program which services that interrupt
request. This program is also known as interrupt handler.
After the mterrupting condition / device have been
serviced, the execution of original program is resumed.

Data Transfer Procesaing sleps of CPU
Opsration Start
Lalsulae thy
eddressol Nent
Insirugtion

Calculate
Operund sddicas

Nao

upr?
Yes
Acknowledge snd Process
Interrupt by saving conlaxt and
disabling luwer priority
@ Load the adurcss of Mirst
ingsruniivn of liveied ISR

& IFISR is over sian tw intemupicd progrsm

o If program |3 over then jump 19 ether
progream.

Flg. : Instructlon Cycle with Inlcrmp(. Cycle
Thus, an interrupt can be co_nmdercd as the
interruption of the execution of un ongoing user progra:'l.
The execution of user program resumes as soon as the
interrupt processing is completed. Therefore, the user

{B.Tech. (VI Sem) C.5. Solved Papers)

program does not contain any code for interrupt handling.
This job is to be performed by the processor and the
operating system, which in turn is also responsible for
suspending the execution of the user program, and later
after interrupt handling, resumes the user program from
the point of interruption.

But when can a user program execution are
interrupted? It will not be desirable to interrupt a program
while an instruction is getting executed and is in a state
like instruction decode. The niost desirable place for
program interruption would be when it has completed the
previous instruction and is about to start a new instruction.
Figure shows instruction execution cycle with interrupt
cycle, where the interrupt condition is acknowledged. Note
that even interrupt service routine is also a program and
afteracknowledging interrupt the next instruction executed
through instruction cycle is the first instruction of interrupt
servicing routine.

In the interrupt cycle, the responsibility of the CPU/
Processor is to check whether any interrupts have
occurred checking the presence of the interrupt signal. In
case no interrupt needs service, the processor proceeds
to the next instruction of the current program.

In case an interrupt needs servicing then the
interrupt is processed as per the following.

1. Suspend the execution of current program and save
its context.

2. Set the Program counter to the starting address of
the interrupt service routine of the interrupt
acknowledged. 2 !

3. The processor then executes theinstructions in the
interrupt-servicing program. The interrupt serviging
programs are normally part of the operating system.

4. After completing the interrupt servicing program
the CPU can resume the program has suspended
in step 1 above.

e ——————————————————
Q.12 A DMA controller transfer 16-bits words to
memory using cycle stealing. The words are
assembled from a device that transmits character
at a rate of 2400 characters per second. The
CPU be is fetching and executing instruction at
an average rate of 1 million instructions per
second. By how much the CPU be slowed down
because of the DMA transfer. {R.T.U. 2016/

Ans. Hence, In | cycle stolen from the CPU, DMA
controller sends a word to memory. Derive transmits 2400
characters per sec where 1 character = 8 bit ASCII.
(A) DMA controller is a special processor only used
for DMA which acts as a intermediate between memory
and I/0 device.

{CAO0.47

| Bit Pairs
Q. Q,
0 0 | ASR
11 ASR
1 0 | - ASR
0 1 |+,ASR
Step-1 givenn =35
A Q Q. initially value
00000 11011 0
(initially always 0)
o 01011 11011 0 A—A-M 00000
Step-2 00101 11101 1 ASR 10101
n=d 01011
Step-3 00010 11110 1 ASR
n=73
00010
1011 11110 1 AeA+M
Step4 011 1111 0 ASR 10101
n=2 10111
Step-5 00110 11111 0 Ae—A-M 11011
P 00011 01111 1 ASR 10101
n=l 00110
Step-6 00001 10111 | ASR
n=0
Now when n will be 0 then stop algorithm and return
AQ.

final result AQ=0000110111

18 What are different type of DMA transfer?
Explain. : [R.T.U. Dec. 2013}

Ans. Different type of DMA Transfer

The two types of DMA transfers are flyby DMA
transfers and fetch-and-deposit DMA transfers. The three
common transfer modes are single, block, and demand
transfer modes. These DMA transfer types and modes
are described in the following paragraphs.

1. The fastest DMA transfer type is referred to
as a single-cycle, single-address, or flyby transfer. In a
flyby DMA transfer, a single bus operation is used ‘to
accomplish the transfer, with data read from the source
and written to the destination simultaneously. In flyby
operation, the device requesting service asserts a DMA
request on the appropriate channel request line of the
DMA controller. The DMA controller responds by-gainin g
control of the system bus from the CPU and thestissuing
the pre-programmed memory address. Simultanegusly, the
DMA controller sends a DMA acknowledge signakto the
requesting device. This signal alerts the requestingdevice

to drive the data onto the system data bus or to-latch the

.. (CAD.48)
data from the system bus; depending on the direction of

the transfer.

In other words, a flyby DMA transfer looks like a
memory read or write cycle with the DMA controller
supplying the address and the I/O device reading or writing
the data. Because flyby DMA transfers involve a single
memory cycle per data transfer, these transfers are very
efficient; however, memory-to-memory transfers arc not
possible in this mode.

2. The second type of DMA transfer is referred
to as a dual-cycle, dual-address, flow-through, or fetch-
and-deposit DMA transfer. As these names imply, this
type of transfer involves two memory or I/O cycles. The
data being tansferred is first read from the /O device or
memory into a temporary data register internal to the DMA
controller. The data is then written to the memory of /O
device in the next cycle. Although inefficient because the
DMA controller performs two cycles and thus retains the
system bus longer, this type of transfer is useful for
interfacing devices with different data bus sizes.

For example, a DMA controller can perform two
16-bit read operations from one location followed by a
32-bit write operation to another location. A DMA
controller supporting this type of transfer has two address
registers per channel (source address and destination
address) and bus-size registers, in addition to the usual
transfer count and control registers. Unlike the flyby
operation, this type of DMA transfer is suitable for both
memory-to-memory and I/O transfers.

DMA Transfer Modes ‘

In addition to DMA transfer types, DMA

controllers have one or more DMA transfer modes. Single,

block and demand are the most common transfer modes.

1. Single transfer mode transfers one data value
for each DMA request assertion. This mode is the slowest
method of transfer because it requires the DMA controller
to arbitrate for the system bus with each transfer. This
arbitration is not a major problem on a lightly loaded bus,
but it can lead to latency problems when multiple devices
are using the bus.

2. Block and demand transfer modes increase
system throughput by allowing the DMA controller to
perforin multiple DMA transfers when the DMA controller
has gained the bus. For block mode transfers, the DMA
controller performs the entire DMA sequence as specified
by the transfer counf register at the fastest possible rate
in responsc to a single DMA request from the /O device.

3. For demand mode transfers, the DMA
controller performs DMA transfers at the fastest possible
rate as long as the /O device asserts its DMA request.
When the 1/O device unasserts this DMA request,

transfers are held off.

o~ 11

O 0 P il

ca

((\ompuur Architecture and Omanhaﬁo?’

Similarly, C,, Cy, Cy, C, and Cy can be expanded
to remove the recursion.

11 1l 11
S IFORT

o (n \ w |

e 7 Dy s O e &
Fig. 2 : 8-bit carry look-ahead adder
The equations (2), (3), (4) and others, if derived,
suggest that C,, C, ..., C can be generated directly from
C,. In other words, these eight carries depend only on the
initial carry C,. For this reason, these equations are called,
carry look-ahcad equatlons An 8-bit carry look-ahead
adder (CLA) is shown in fig.
‘Total time needed to perform one addition : The
maximum delay of the CLA is 6 x & (for G, and P,
generation, delay = for C, generation, dely = and lastly
another 3 for sum bit S)) where is the average gate delay.
The same holds good for any number fo bits because the
adder delay does not depend on size of number (n). It
depends on the number of levels of gates used to generate

the gum and the carry bits.

hat is serial adder? Discuss it briefly with
[R.T.U. Dec. 2013]

Ans. Serial Adder : If speed is not of great importance,
a cost-effective option is to use a serial adder. This is the
one which would accept bit by bit input of the n-bit numbers
and there is a bit by bit output of the n-bit Sum.

Serial input

e =L

....._._._.9
c ¢ Serial output
Memory _,—l

Element

B
CLLII—

" F ig. : The circuit for serial addition
. i.e. In Serial adder, Bits are added a pair at a time
(in one clock cycle)

A =an-1an-2 ... a0, B=bn-1 bn-2 b0

In this adder we would be required one full adder
and a memory element. Hence we see we require lesser
hardware. The circuit for serial addition is as follows :

<{CAO.a9)

Example : Decimal
5+9=14
X=5Y=9, Sum=14
Binary
0101 +1001=1110
Addition of each step

i Inputs Outputs
'Cin X Y |Sum Cout
0 1 1l o
1 0 0] 1 0
0 1 0| 1 0
0 0 1 | 0

- addition starts from lowest.
Result=1110o0r 14

Q.21 Explain floating point addition and subtraction
with suitable example.
[R.T.U. Dec. 2013]

Ans. Floating Point Addition and Subtraction
For addition and subtraction, it is necessary to

_ ensure that both operands have the same exponent value.

This may require shifting the radix point on one of the
operands to achieve alignment radix point on one of the
operands to achieve alignment so due to alignment needs
addition and subtraction are more complex than
multiplication and division. In floating point arithmetic.

There are four basic phases of the algorithm for
addition and subtraction.

(a) Check for zeros .

(b) Align the significants.

(c¢) Add of'subtract the significants.

'(d) Normalize the result

Floating point
Numbers

X=X XBY | X +Y =(X;XB* " +¥;)XB"
Y=Y, XB* | X-Y=(X;XB*™"-¥,)XB"

Addition and subtraction operation

}‘x, <Y,

Examples :
X=03x10*=30
Y =0.2x 10°=200
X+Y =(0.3x102+0.2)x10°
=0.23 x 10°=230
X-Y =(03x10"2-02)x 10’
=(-0.17) x 10°=-170

T R A N MR S KT RS T TR R

{B.Tech [Vi Sem) C.5. Soimed Popers
Memory mapped U'O
Advantages

(i) No opcodes or processor circuits are used wp for L

O instructior

() All memory reference instructions, pot just loads
and stores, may be-used to manipulate 1O ports.
(m) The number of available 'O ports addresses is
virtually onlimated.
(1v) The hardware bus structare 1s stmplified.
Disadvantages
(1) Part of the memory address space is used up.
(i) Interfaces may need more circuitry to recogaize
longer addresses.
(z) Memory reference msiruchons may be longer or
slower than optimized 'O iastructions.
Isolated O
Advantages
(i) The complete 1 Mbyie memory address space is
available for use with memory.
(2) Special instructions have beea provided in the
instruction set of the 8088/8086 10 perform isolated
/O operations. These instructions-have been
tailored to maximize IO performance.
(i) 'O device addressed can be short.
(v) Memory and IO design can be separated.
(v) Programs zre clears because /O transfers are
distinguished from other operations.
Disadvantages -
(i) Allnput and output data transfers must tzke place
between the AL or AX register and the VO part.
(1) Extra decoding and extra instructions.

‘:i;rue short note on CPU-IOP Communication.

Ans.CPU-IOP Communication: The communication
between CPU and IOP may take different forms,
depending on the particular computer considered. In most
cases the memory unit acts as a message center where
each processor leaves information for the other. To
apprecizte the operation of a typical IOP, we will illustrate
by a specific example the method by which the CPU and
10P communicate. This is a simplified example that omits
many operating detzils in order to provide an overview of
basic concepts.

The sequence of operations may be carried out as
shown in the flowchan of Fig. The CPU sends an
instruction 10 test the IOP path,

Comp Archi e and Organisation p—
T wemoes 0P opermom
———
| Sent o
| © = XOF
. Trowler matas word
pr— / e e
 § O st
= i escaes —_— Access memory b
= P IOF propan
CFU commms wit
" - Condect LO mansers
g DMAC prepare
RS POt
Wr_-ﬁnm
e CFPU
Regues YOF xxas
Traesler sabes word
B memory oouca
Chect sates woed /
fior corect ransler
Comaa

Fig. : CPU-IOP Commuaication

The IOP responds by inserting a status word in
memory for the CPU to check. The bits of the staws
word indicate the condition of the IOP and /O device,
such as IOP overload condition, device busy with another
transfer, or device ready for IO transfer. The CPU refers
1o the status word in memory to decide what to do next.
If all is in order, the CPU sends the instruction to start 'O
transfer. The memory address received with this
instruction tells the IOP where to find its program.

The CPU can now continue with another program
while the IOP is busy with the /O program. Both programs
refer to memory by means of DMA transfer. When the
IOP terminates the execution of its program, it sends an
interrupt request to the CPU. The CPU responds to the
interrupt by issuing an instruction to read the status from
the IOP. The IOP responds by placing the contents of its
status report into a spectfied memory location. The status
word indicates whether the transfer has been completed
or if any errors occurred during the transfer. From
inspection of the bits in the status word, the CPU
determines if the I/O operation was completed
satisfactorily without errors.

The 10OP takes care of all data transfers between

—{CA0.53)
several 'O units and the memory while the CPU is
processing another program. The IOP and CPU are
competing for the use of memory, so the number of devices
that can be in operation is limited by the access time of
the memory. [t is not possible to saturate the memory by
IO devices in most systems, as the speed of most devices
1s much slower than the CPU. However, some very fast
units, such as magnetic disks, can use an appreciable
number of the available memory cycles. In that case, the
speed of the CPU may deteriorate because it will often
have to wait for the IOP to conduct memory transfers,

19 plain character oriented protocol.

Ans.Character-Oriented Protocol: The character-
oriented protocol is based on the binary code of a character
set. The code most commonly used is ASCII (American
Standard Code for Information Interchange). It is a 7-bit
code with an eighth bit used for parity. The code has 128
characters, of which 95 are graphic characters and 33
are control characters. The graphic characters include
the upper and lowercase letters, the ten numerals, and a
variety of special symbols. The control characters are used
for the purpose of routing data, arranging the test in a
desired format, and for the layout of the printed page.
The characters that control the transmission .are called
communication control characters. These characters are
listed in table. Each character has a 7-bit code and is
referred to by a three-lerter symbol. The role of each
character in the control of data transmission is stated
briefly in the function column of the table.

The SYN character serves as synchronizing agent
between the transmitter and receiver. When the 7-bit
ASCII code is used with an odd-parity bit in the most
significant position, the assigned SYN character has the
8-bit code 00010110 which has the property that, upon
circular shifting, it repeats itself only after a full 8-bit cycle.
When the transmitter starts sending 8-bit characters, it
sends a few characters first and then sends the actual
message. The initial continuous string of bits accepted by
the receiver is checked for a SYN character. In other
words, with each clock pulse, the receiver checks the last
eight bits received.

If they do not match the bits of the SYN character,
the receiver accepts the next bit, rejects the previous high-
order bit, and again checks the last eight bits received for

‘a SYN character. This is repeated after each clock pulse

and bit received until a SYN character is recognized. Once
a SYN character is detected, the receiver has framgd a
character. From here on the receiver counts every eight
bits and accepts them as a single character. Usually, the

S

Y R s it e e

{B.Tech. (VI Sem.) C.S. Solved Papers)

(cAO0.54}

receiver checks two consecutive SYN characters to
remove any doubt that the first did not occur as a result of
anoise signal on the line. Moreover, when the transmitter
1s idle and does.not have any message characters to send,
it sends a continuous string of SYN characters. The
receiver recognizes these characters as a condition for
synchronizing the line and goes into a synchronous idle
state. In this state, the two units maintain bit and character
synchronism even though no meaningful information is

communicated.
Table : ASCII Communication Control Characters

Code [Symbol| Meaning Function
0010110| SYN |Synchronous |Establishes
idle synchronism
0000001| SOH |Start of Heading of block
‘ heading message
0000010| STX |Startoftext [Precedes block of
text
0000011| ETX |End oftext Terminates block
of text
0000100| EOT |End of -Concludes
transmission | transmission
0000110| ACK |Acknowledge |Affirmative
acknowledgement
0010101 NAK |Negative |Negative
acknowledge |acknowledgement
0000101| ENQ |Inquiry Inquire if terminal
is on
0010111| ETB |End of End of block of
transmission |data
block - :
0010000{ DLE |Data link Special control
escape character

Messages are transmitted through the data link with
an established format consisting of a header field, a text
field, and an error-checking field. A typical message format
for a character-oriented protocol is shown in Fig. The two
SYN characters assure proper synchronization at the start
of the message. Following the SYN characters is the
header, which starts with an SOH (start of heading)
character. The header consists of address and control
information. The STX character terminates the header
and signifies the beginning of the text transmission. The
text portion of the message is variable in length and may
contain any ASCII characters except the communication
control characters. The text field is terminated with the
" ETX character. The last field is a block check character
(BCC) used for error checking. It is usually either.a
longitudinal redundancy check (LRC) or a cyclic
redundancy check (CRC). .

The receiver accepts the message and calculates
its own BCC. Ifthe BCC transmitted does not agree with
the BCC calculated by the receiver, the receiver responds
with a negative acknowledge (NAK) character. The
message is then retransmitted and checked again.
Retransmissjon will be typically attempted several times
before it is assumed that the line is faulty. When the
transmitted BCC matches the one calculated by the
receiver, the response is a positive acknowledgment using
the ACK character.

Transmission Example: In order to appreciate the
function of a data communication processor, let us illustrate
by a specific example the method by which a terminal
and the processor communicate. The communication with
the memory unit and CPU is similar to any I/O processor.

LSYN]SYN [SOH [Header | STX | Text | ETX | BCC |

Fig. : Typical message format for character-oriented protocol

Q.27 Explain Decimal arithmetic unit.

Ans.Decimal Arithmetic Unit: The user of a computer
prepares data with decimal numbers and receives results
in decimal form. A CPU with an arithmetic logic unit can
perform arithmetic micro-operations with binary data. To
perform arithmetic operations with decimal data, it is
necessary to convert the input decimal numbers to binary,
to perform all calculations with binary numbers, and to

. convert the results into decimal. This may be an efficient

method in applications requiring a large number of
calculations and a relatively smaller amount of input and
output data. :

- When the application calls for a large amount of
input-output and a relatively smaller number of arithmetic
calculations, it becomes convenient to do’ the internal
arithmetic directly with the decimal numbers. Computers
capable of performing decimal arithmetic must store the
decimal data in binary-coded form. The decimal numbers
are then applied to a decimal arithmetic unit capable of

“executing decimal arithmetic microoperations.

Electronic calculators invariably ‘use an internal
decimal arithmetic unit since inputs and outputs are
frequent. There does not seem to be a reason for
converting the keyboard input numbers to binary and again
converting the displayed results to decimal, since this

_process requires special circuits and also takes a longer

time to execute. Many computers have hardware for
arithietic calculations with both binary and decimal data.
Users can spécify by programmed instructions whether
they want the computer to perform calculations with binary
‘or decimal data. ;

(Computer Architecture and Orgarltsm:imTJL

In view of higher data transfer rate, parallel data
transfer scheme has the inherent advantage over the serial
one. However, it requires larger bus width and thus the

_associated hardware cost is higher. Serial communication
is usually selected for data transfer over larger distance
involving devices having low data transfer rates. For
example, VDU terminals usually access the computer in
a serial data transfer mode. By contrast, a disk drive having
much higher data transfer rate is invariably connected in
parallel data transfer mode. In general, the cost of bus
structure along with the data transfer rate of the 10 device
dictate the selection of serial or parallel data transfer
format in an IO subsystem.

q ¢ Pescribe the data transfer method using DMA.
[R.T.U. 2017]

OR

Write short note on DMA. [R.T.U. 2014]

Ans. DMA : In Direct Memory Access (DMA), the
interface transfers data into and out of the memory unit

through the memory bus. The CPU initiates the transfer .

by supplying the interface with the starting address and
the number of words needed to be transferred and the
proceeds to execute other tasks. When the transfer is
made, the DMA requests memory cycles through the
memory bus. When the request is granted by the memory
controller, the DMA transfers the data directly into the
memory. The CPU merely delays its memory access
operation to allow the direct memory I/O transfer. Since
peripheral speed is usually slower than processor speed,
I/O memory transfers are infrequent compared to
processor access to memory.

Working of DMA : The position of the DMA controller

among the other components in a2 computer system is .

illustrated in fig. The CPU communicates withthe DMA
through the address and data buses as with any interface
unit. The DMA has its own address, which activates the
DS and RS lines. The CPU initializes the DMA through
the data bus. Once the DMA receives the start control
command, it can start the transfer between the peripheral
device and the memory.

When the peripheral device sends a DMA request,
the DMA controller activates the BR line, informing the
CPU to relinquish the buses. The CPU responds with its
BG line, informing the DMA that its buses are disabled.
The DMA then puts the current value of its address
register into the-address but initiates the RD or WR. signal,
and sends a DMA acknowledge to the peripheral device.
Note that the RD and WR lines in the DMA controller
are bidirectional. The direction of transfer depends on the
status of the BG line. When BG =0, the RD and WR are

. . —{ CAO.57)
input lines allowing the CPU to commu

i : nicate with the
internal DMA registers. When BG = 1, the RD and WR

are output lines from the DMA controller to the random-
access memory to specify the read or write operation for
the data.

When the peripheral device receives a DMA
acknowlgdge, it puts a word in the data bus (for write) or
receives a word from the data bus (for read). Thus, the
DMA controls the read or write operations and supplies
the address for the memory. The peripheral unit can then
communicate with memory through the data bus for direct

transfer between the two units while the CPU is
momentarily disabled.

» [nterrupt Random-access
¥ BG CPU memory (RAM)
BR
Address Address
RD| WR P Red £..2 T+ T
L s control RD |WR Data
4 Write control
E Data bus y
[Address bus k
S
select
yRD yWR Data 1
DMA
A acknowledge
DS g
Rs Direct memory o
Peripherall
R accéss (DMA) de‘:'m
»BG controller = DMA request_
Interrupt Y Ny

Fig. : DMA transfer in a computer system
- -. For each word that-is-transferred, the DMA
increments its address register and decrements its word
count register. If the word count does not reach zero, the
DMA checks the request line coming from the peripheral.
For a high-speed device, the line will be active as-soon as
the previous transfer is completed. A second transfer is
then initiated, and the process continues until the entire
block is transferred. If the peripheral speed is slower, the
DMA request line may come somewhat later. In this case
the DMA disables the bus request line so that the CPU
can continue tg execute its program. When the péripheral
requests a transfer, the DMA requests the buses‘again.

Ifthe word count register reaches zero, the DMA

'stops any further transfer and removes its bus request. It

also informs the CPU of the termination by means-of an
interrupt. When the¢ CPU responds to the intgrrupt?'_‘it reads
the content of the word count register. The zero value of

[B et T —

this register indicates that all the words were transferred

successfully. The CPU can read this register at any time
to check the number of words already transferred.
A DMA controller may have more than one
‘channel. In this case, each channel has a request and
acknowledge pair of control signals which are connected
to separate peripheral devices. Each channel also has its
own address register and word count register within the
DMA controller. A priority among the channels may be
established so that channels with high priority are serviced
before channels with lower priority. |
DMA transfer is very useful in many applications.
It is used for fast transfer of information between magnetic
disks and memory. It is also useful for updating the display
in an interactive terminal. Typically, an image of the screen
display of the terminal is kept in memory which can be
updated under program control. The contents of the
memory can be transferred to the screen periodically by
- means of DMA transfer. |
e
Q.31 (a) What is an i‘nterrdpt service subroutine?
How can the interrupt priority be resolved?
(b) Explain in short programmed 1I/0 and
interrupt initiated I/O. |
(¢c) What do you mean by synchronous and
asynchronous data transfer? Explain hand
shaking method asynchronous data
transfer? [R.T.U. 2016/

Ans.(a) Interrupt Servnce Subroutine : An interrupt
| TGN . SRR SOLn O NI)

- @ w W w $ w w wv v

CAO.68 }

—(B.Tech. (VI Sem) C.S. Solved Papers)

—

modem from the signal transitions t
data. Any frequency ft that may occur between the
tter and receiver clocks is continuously adjusted
> the receiv or clock at the frequency of the

occur in the received

trans

2y ma

womir

.c¢ -~ tenninal on the transmitter side also uses the
“loc~ . lormation from its modem. In this way, the sam¢
it rute is maintained in both transmitter and receiver.
Contrary to asynchronous transmission, where cach
character can be sent separately with its own start and
stop bits, synchronous transmission must send a continuous
message in order to maintain synchronism. The message
consists of a group of bits transmitted sequentially as a
block of da11. The entire block is transmitted with special
control characters at the beginning and end of the block.
I'he control characters at the beginning of the block supply
the information needed to separate the incoming bits into
individual characters.
One of the functions of the data communication
‘processor is to check for transmission errors. An error
can be detected by checking the parity ineach information.
The purpose of a data link protocol is to establish and
terminate a connection between two stations, to identify
the sender and receiver, to ensure that all messages are
passed correctly without errors, and to handle all control
functions involved in a sequence of data :ransfers.
Protocols are divided into two major categories according
to the message-framing technique used. These are
character-oriented protocol and bit-oriented protocol.
——
Q.37 Writg short note on the following.
%) Data transparency

§ oriented protocol

Ans.(a) Data transparency : The character-oriented
Iy developed to communicate with

:,:.f.z was orig
keyboard, printer, and display devices that use
alphanumeric characters exclusively. As the data
communication field expanded, it became necessary to
transmit binary information which is not ASCI! text. This
happens, for example, when two remote computers send
programs and data to each other over a communication
channel. An arbitrary bit pattern in the text message
becomes a problem in the character-oriented protocol. This
is because any 8-bit pattern belonging to acommunication
control character will be interpreted erroneously by the
receiver. For example, if the binary data in the text portion
of the message has the 8-bit pattern 10000011, the receiver

nterpret this as an ETX choracter and assume that it
the text portion of

renched the end of the text lield W
the message is variable in ler
are to be treated without reference o any particalar code,
it is said to contain transparent data. This feature requires
oo the character recornition logis of the receiver be
turned off s that data patterns in the text field are not
accidentally interpreted as communication contrel
information.

Data transparency is achieved in character-
oriented protocols by inserting a DLE (data link escape)
character before each communication control character.
Thus, the start of heading is detected from the double
character DLE SOH, and the text field is terminated with
the double character DLE ETX. If the DLE bit pattern
00010000 occurs in the text portion of the message, the
transmitter inserts another DLE bit pattern following it.
I'he receiver removes all DLE characters and then checks
the next 8-bit pattern, If it is another DLE bit pattern, the
receiver considers it as part of the text and continues to
reccivetext. Otherwise, the receiver takes the following
8-bit patternh to be a communication control character.

The achievement of data trarisparéncy by means

of the DLE character is inefficient and somewhat
complicated to implement. Therefore, other pratocols have
been developed to make the transmission of transparent
data more efficient. One protocol-used by Digital
Equipment Corporation employs a byte count field that
gives the number of bytes in the message that follows.
The receiver must then count the number of bytes
received to reach the end of the text field. The protocol
that has been mostly used to solve the transparency problem
and other problems associated with the character-oriented
protocol is the bit-oriented protocol.
Ans.(b) Bit-Oricnted Protocol: The bit-oriented
protocol does not use characters in its control ficld and is
independent of any particular code. It allows the
transmission of serial bit stream of any length without the
implication of character boundaries. Messages are
organized in a specific format called a frame. In addition
to the information field, a frame contains address, control,
and error-checking fields. The frame boundaries are
determined from a special 8-bit number called a flag.
Examples of bit-oriented protocols are SDLC (synchronous
data link control) used by IBM, HDLC (high-level data
link control) adopted by the International Standards
Organization, and ADCCP (advanced data communication
control procedure) adopted by the American National
Standards Institute.

@ﬁ Architecture and Organisation jem—

Any data communication link involves at least two
participating stations. The station that has responsibility
for the data link and issues the commands to control the
link is called the primary station. The other station is a
secondary station. Bit-oriented protocols assume the
presence of one primary station and one or more
secondary stations. All communication on the data link is
from the primary station to one or more secondary stations,
or from a secondary station to the primary station.

The frame format for the bit-oriented protocol is
shown in Fig.1. A frame starts with the 8-bit flag 011111 10
followed by an address and control sequence. The
information field is not restricted in format or content and
can be of any length. The frame check ficld is a CRC
(cyclic redundancy check) sequence used for detecting
errors in transmission. The ending flag indicates to the
receiving station that the 16 bits just received constilute
the CRC bits. The ending frame can be followed by
another frame, another flag, or a sequence of consecutive
{’s. When two frames follow each other, the ::n_énam_._.m
flag is simultaneously the ending flag of the first frame
and the beginning flag of the next frame. If no information
is exchanged, Ea._i:m_:mno_. sends a series of flags to
keep the line in the active state, The line is said to be in
the idle state with the occurrenge of 15 or more consecutive
1’s. Frames with certain control messages are sent without
an information field. A frame must have a minimum of32
bits between two flags to accommodate the address,
control, and frame check fields. The maximum length
depends on the condition of the communication channel
and its ability to transmit long messages error-free. ~."*

To prevent a flag from oceurring in {he middle of a
frame, the bit-oriented protocol uses a method called zero

msernon.

I~ .—.._‘.rﬂ. T Adares Tntormation | i rame | Tap,
_ [IRRRY 8 bits any number | cheek | 0T1TLELO
Lt Ly e of bits ebis]

Fig.1: Frame format [or bit-oricuted protocoi.
This requires that a 0 be inserted by the transmitting
station after any ~uccession of five cont T

tive 1% Thus-the bit pattevi 0111111 1s transmitted as
01111101-and restored by the receiver to its original value
by removal of the following the five 1's. As a consequence,
no pattern of 01111110 is ever transmitted between the
beginning and ending flags.

{Cn0.69)
Following the flag is the address field, which is used
by the primary station to designate the secondary station
address. When a secondary station transmits a frame, the
address tells the primary station which secondary station
originated the frame. An address field of eight bits can
specify up to 256 addresses. Some bit-oriented protocols
permit the use of an extended address field. To do this
the least significant bit of an address byte is set 1o 0 1f
another address byte follows A 1 in the least significant
bit of a byte is used to recognize the last address byte
Following the address field is the control field. The
control field comes in three different formats, as shown
in Fig.2: The information transfer format is used for
ordinary data transnussion. Each frame transmitted in this
format contains send and receive counts. A station that
transmits sequenced frames counts and numbers each
frame. This count is given by the send count N_. A station
receiving sequenced frames counts each error-free frame
that it receives. This count is given by the receive count
N, The N, count advances when a frame is checked and
found to be-without errors. The receiver confirms accepted
numbered information frames by returning its N, count to
the transmitting station.
' The P/F bit is:used by the primary station to poll a
secondary station to request that it initiate transmission

3 4 3 [?]

N R

Infoémation Uanaler:
o s . ¥ T
Supervisory: _] L] .— Code
T T T T
Unnumbered ﬂ‘_] _ Code _— PIF _ Code _.

N, Send count P/F Foll/fal

N, Racelve count Code Binary code

Fig.2 : Contrul field format in bit-oriented protocol,

It is used by the secondary station to indicate the
final transmitted frame. Thus the P/F field is called P (poll)
when the primary station is transmitting but is designated
as F (final) when a secondary station is transmitting. Each
frame sent to the secondary station from the primary
station has a P bit set to 0. When the primary station is
finished and ready for the secondary station to respond,
the P bit is set to 1. The secondary station then responds
with a number of frames in which the F bit is set to 0.
When the secondary station sends the last frame, it sets

—{(B.Tech. (VI Sem.) C.S. Solr=d Papers)

(CAO.70}
the F bitto 1. ._.—_n.qnwoa_ the P/F bit is used to determine Table : Derivation of BCD Adder
when data transmission from a station is finished. Binary Sum BCD Sum
The supervisory format of the control field is K|Z¢|24]|2,|2,|C % Ss [Si| Sy |S;| Decimal
recognized from the first two bits being 1 and 0. The next oloJojofoJofofojo]o 0
two bits indicate the type of command. This tollows by a 0j0j0j0})1]0}0;0[0])1 1
P/F bit and a receive sequence frame count. The frames ojojojrjolojojojijo 2
of the supervisory format do not carry an information field. 0,010 1 11010 0] 1L1 3
They are used to assist in the transfer of information in ojoji1jojfojoloji}0]0 4
that-they confirm the acceptance of preceding frames gjuiti 8l i 0 el 2
carrying inforination, convey ready or busy conditions. and HEREESWE DERE RE A% AL L2
report frame numbering errors. .. orofid it1lolallll, J
The unnumbered format is recognized from the first M “ w W H_U 0] 110109 §

two bits being 11. The five code bits available in this format ol1]o(1]o0 H_u Lolo 2
can specify up to 32 commands and responses. The olt1lol1]1]1 m m M L =
primary station uses the control field to specify acommand ol1l1]ofJoJt1Jo]Jo]l m “M
for a secondary station. The secondary station uses the gf1 /1 Jo]J1f1]jO0]Of1l]1 13
control field to transmit a response to the pritnary station. of1/J1]1]jof1joj1]O]O 14
Unpumbered-format frames are employed for initialization o1]t [1Jrjtrjofrjojt 15
of link fuhctions, reporting procedural errors, placing 1foJoJoJof1fof1]i]O0 16
stations in a disconnected mode, and other data link control 1foJoJo]t1r]rjof1jif1 17

rations 1JoJoj1]ofr[i]o]o]o 18
.-|l1.|Vl Tfoflof1j1]if1jojO]1 19
..ﬂd plain BCD adder with block diagram.

— When the binary sum is greater than 1001, we obtain
ithmetic addition of a nonvalid BCD representation. The addition of binary 6

Ans. BCD Adder: Consider the ari
two decimal digits in BCD, together with a possible carry

from a previous stage. Since each input digit does not
exceed 9, the output sum cannot be greater than 9+ 9 +1
=19, the 1 in the sum being an input-carry. Suppose that
we apply two BCD digits to a 4-bit binary adder. The
adder will form the sum in binary and produce a result
that may range from 0 to 19. These binary numbers are
listed in Table and are labeled by symbols K, Z, Z,, Z,,
and Z,. K is the carry and the subscripts under the letter
Z represent the weights 8,4, 2, and | that can be assigned
to the four bits in the BCD code. The first column in the
tabie lists the binary sums as they appear in the outputs of
a 4-bit binary adder. The output sum of two decimal
numbers must be represented in BCD and should appear
in the form listed in the second column of the table. The
problem is to find a simple rule by which the binary number
in the first column can be converted t6 the correct BCD
digit aoﬂ_.omn:.wao: of the number in the second column.
In examining the contents of the table, it is apparent

that when the binary sum i equal to or less than 1001, the
corresponding BCD number is identical and therefore no

conversion is needed.

(0110) to the binary sum converts it to the correct BCD
representation and also produces an output-carry as
required. i
One method of adding decimal numbers in BCD
would be to employ one 4-bit binary adder and perform
the arithmetic operation one digit ata time. The low-order
pair of BCD digits is first added to produce a binary sum.
If the result is equal or greater than 1010, it is corrected
by adding 0110 to the binary sum. This second operation
will automatically produce an output-carry for the next
pair of significant digits. The next higher-order pair of
digits, together with the input-carry, is then added to
produce their binary sum. Ifthis result is equal to or greater
than 1010, it is corrected by adding 0110. The procedure
is repeated until all decimal digits are added.

The logic circuit that detects the necessary
correction can be derived from the table entries. It is
obvious that a correction is needed when the binary sum

has an output carry K = 1. The other six combizations
from 1010 to 1111 that need a correction have a 1 in
position Zg. To distinguish them from binary 1000and 1001
which also havea 1in position Zg, we specify further that

either Z, or Z, must have a 1. The condition for a correction

—{(CAO.71)

(Computer Architecture and Org tion}

and an output-carry can be expressed by the Boolean

function
C=K+Z2Z,+Z/Z,

When C = 1, it is necessary to add 0110 to the
binary sum and provide an output-carry for the next stage.
A BCD adder is a circuit that adds two BCD digits in
parallel and produces a sum digit also in BCD. A BCD
adder must include the correction logic in its internal
construction. To add 0110 to the binary sum, we use a
second 4-bit binary adder as shown in Fig. The two
decimal digits, together with the input-carry. are first added
in the top 4-bit binary adder to produce the binary sum.
When the output-carry is-equal to 0, nothing is added.to
the binary sum, When it is equal to I, binary 0110 is added
to the binary sum through the bottom 4-bit binary adder.
The output-carry generated from the bottom binary adder
may be ignored, since it supplies information already
available in the output-carry terminal.

A decimal parallel-adder that adds n decitnal digits
needs n BCD adder stages with the output-carry from
one stage connected to the input-carry of the next-higher-
order stage. Toachieve shorter propagation dclays. BC D

adders include the necessary circuits for carry look-ahead.

Furthermore, the adder circuit for the correction does not

need all four full-adders, and this circuit can be optimized.
Addend

N

Carry &bt binary adfer
out K a
Z, L L L

i

—Hg

4-bit binary adder

el

S S5 S5 05

Fig. : Block diagram of BCD adder.
Qaa

[s

ParT-B

P

giplain hov virtual address is translated into
eal uddress in segmented memory systein.

JR.T.U. 2017]

o

physical memory frames. The pages do not have to be

contiguous in memory. A page table keeps track of where

each page is located in physical memory. This allows the
operating system to load a program of any size into any
available frames. Only the currently used pages need to
be loaded. Unused pages can remain on disk until they
are referenced. This allows many-large programs to be
executed on a relatively small memory system. A resident
flag in the page table indicates whether or not the page is
in memory. The page table also includes several other
flags to keep track of memory usage. A use flag is set
whenever the page is referenced. A dirty bit is set
whenever the page is changed to inform the operating
system that the page in memory is different than the page
ondisk. . - ' : *

The addresses that appear in programs are the virtual
addresses or program addresses. For every memory
access, either to fetch an instructign or data, the CPU
must translate the virtual address to g real physical address.
A virtual memory address can be. considered to be
composed of two parts: a page number and an offset into
the page. The page number determines which page
contains the information and the offset specifies which
byte within the page. The size of the offset field is the log
base 2 of the size of a page. ' |

The virtual addresses can be represented as

Aas. In a virtual mejgory system, the program memory is
ditided into fixed sized pages and allocated in fixed Sized .

13 bits 10 bits
_page number offset

To convert a virtual address into a physical address,
the CPU uses the page number as an index into the page
table. If the page is resident, the physical frame address
in the page table is concatenated in front of the offset to
create the physical address.

-~ o -

AL

Vit Ao esy
[Fags rumbsr '% Offset |

“:ro:";ﬂ. Pags Ttk .
\\
\\
e |
[frem-mu: }—--.v!l Frame adaress] Oftosd |
Priguce A ess
F @\ - gan
(Briefly compare the mapping procedure used
<’ in cache memory organization. [R.T.U. 2017/

Ans. The different Cache mapping techniques are as
follows:-

(i) Direct Mapping
(ib Associative Mapping
(iiiy SetAssociative Mapping

Consider a cache consisting of 128 blocks of 16 words
each, for total of 2048(2K) works and assume that the
main memory is addressable by 16 bit address. Main
memory is 64K which will be viewed as 4K blocks of 16

. works each:”

(i) Direct Mapping

Block 0
Block 1
: Cache s
- . A v
[teg | Block0 9 !
tag Block 1 Block 127
Block 128
¥ ¥
¥ 1
[g | Block 127
‘ Block 255
Block 256
Tag Block Word
A 4
5 7 4 a 4
Main Memory Block 4095
Adnssa Main Memory

Fig. 1 : Direct Mapping

(cao0.74)—

i Thesimplest way to determine cache locations
in which store memory blocks is direct mapping
technique.

il. In this block J of the main memory maps on to
block J modulo 128 of the cache. Thus main
memory blocks 0, 128, 256....is loaded into
cache is stored at block 0. Block 1, 129,
257....are stored at block 1 and so on.

“iii. Placement of a block in the cache is determined
from memory address. Memory address is
divided into 3 fields, the fower 4-bits selects one
of the 16 words in a block.

iv.. ' When new block enters the cache, the 7-bit

cache block field determines the cache positions
in which this block must be stored.

V. The higher order 5-bits of the memory address
of the block are stored in 5 tag bits associated
with its location in cache. They identify which
of the 32 blocks that are mapped into this cache
position are currently resident in the cache.

(ii) Associative Mapping

Block 0
tag Block 0 Block 1
ta Block 1
[teo £ ¥
- -
fon =4 fou 5
Block i
| 1
tag Block 127 P x
Cache
Block 4045
l 12 l ol I Main Memory
. Tag Word
Main Memory Address

Fig. 2 : Associative Mapping

i. This is more flexible mapping method, in which
main memory block can be placed into any

cache block position.
il In this, 12 tag bits are required to identify a
memory block when it is resident in the cache.
"§ii. The tag bits of an address received from the
processor are compared to the tag bits of each
~block of the cache to see, if the desired block is
present. This is known as Associative Mapping

technique.

(i)

Saw}

Set1 }

Set
63

iii.

—{B.Tech. (VI Sem.) C.S. Solved Papers)

Cost of an associated mapped cache is higher
than the cost of direct-mapped because of the
need to search all 128 tag patterns to determine
wkether a block is in cache. This is known as
associative search.

Set-Associated Mapping

Cache Block 0
B Biocko Block 1

Bg | Block 1 t =
@ Blook 2 Block 63
| 9 Block 3 <:l Block 64

-
-

AN

3

(189 | Block 126

= Block 127
| tag Block 127 Block 128
Tag Set Word A £
6 6 4
l‘ 7 ’Le A!dd] ‘| Block 4095
> S ieamon rgss Main Memory

Fig. 3 : Set-Associated Mapping
It is the combination of direct and ussociutive
mapping technique.

Cache blocks are grouped into sets and mapping
allow block of main memory reside into any block

- of a specific set. Hence contention problem of

direct mapping is simplified and at the same time,
hardware cost is reduced by decreasing the size
of associative search.

For a cache with two blocks per set. In this
case, memory block 0, 64, 128.....4032 map into
cache set 0 and they can occupy any two block
within this set.

Having 64 sets means that the 6 bit set field of
the address determines which set of the cache
might contain the desired block. The tag biis of
address must be associatively compared to the
tags of the two blocks of the set to check if
desired block is present. This is also called two-
way associative search.

(E;‘E] Explain the role of virtual Memory.

[R.T.U. 2016]

—

Ans. Virtual Memory : In a memory hierarchy system,
prograins and dala are first stored in auxiliary memory.

(Computer Architecture and Organise ton pr————

Portions of a program of data are brought into main memory
as they are needed by the CPU. Virtual memory is a
concept used in the some large computer system that
permit the user to construct programs as though a_large
memory space were available, equal to the totality of
auxiliary memory. Each address that is referenced by the
CPU goes through an address mapping from the so-called
virtual dddress to a physical address in main memory.
Virtual memory is used to give programmers the illusion
that they have a very large memory at their disposal, even
though the computer actually has a relatively small main
memory. A virtual memory system provides a mechanism
for translating program-generated addresses into correct
main memory locations. This is done dynamically, while
programs are being executed in the CPU. The translation ,
or mapping is handled automatically by the hardware by
means of a mapping table.

Q.10 Draw and expluain the memory hicrarchy in a
digital computer. What are the advantages of
cache memory over main memory? |R.T.U. 2016]

_—

Ans. Memory Hierarchy : The total capacity of a

computer can be visualized as being a hierarchy to

components. The memory hierarchy system consists of
all storage devices employed in a computer system from
the auxiliary memory to main memory, to an even smaller
and faster cache memory accessible to the high speed
processing logic.
The memory which resides at the top level of the

memory hierarchy is a very high speed memory called a

cache memory. CPU logic is usually faster the

memory aceess time. With the resuit ihat Frosessing ;

is limited primarily by the speed of the main memory. A

technique used to compensate for the mismatch in

operating speeds is to employ an extremely fast small
cache between the CPU and maj
time is close to processor logic ci
is used fo_r storing segments of programs cu; rently being
ercuted inthe CPU :11'1d temporary data fruqucm.y needed
in tl:le present calculations. B) making programs and data
available at a rapid rate, it s possible to increase the
performance rate of the computer,

nmemory whaose access
ock cycletime. The cache

The main memory resides a
level of the memory hierarchy. |y Occupies a centra|
position by being able to communicate dircetly with the
CPU and with auxiliary memory device through an 1/0

processor. Only programs and data current|
the processor reside in main memory. ¥ needed by

t the second highest

——J {B.Tech. (VI Sem.) C.S. Solved Papers)
R

; Binary
3 data i/p Lines T,
‘| m=2"=2=4 Cell™ o v
n=3 1
2 Address LineC—3 5
Read—— 4x3RAM :
Write—,| .
v 1 ;
3 data o/p Lines 15
" . : Fig. I: 164 RAM block diagram
' Fig. 1: A block d.lagram of a 4x3 RAM To design a 16 x 4 RAM using 4 x 4 RAM chips.
Binary Cell : It consists of a strong element to store The address lines are of 4 bit A_, A.. A, A, ,
asingle bit of an information. On the basis of a construction A, A, are used to select r:1emzory chip and A, A,
of a binary cell, RAM is of two types static, RAM and . useJ& tozse[ect word in a chip., :)
dynamic RAM. In static RAM, the storing element used A,
in a binary cell is flip flop and in dynamic RAM, the storing R CS
element is capacitor. A, g 0 44
A

WL —Ll_l—o 244 0 g
! O v | Decoder 5 ™ : —CS
. _ [==]

‘ ' , | 3 -0 4x4|
4 M, M ', e i
M, 2 4 M,) i —Cs
I .
=yl

0 ax4]
Q _ 35
M, M,) . . 0 4x4
. 5 {Chip 3
BL g | 3 BL Fig 2
- AJ A2 Al AO ._
- Fig. 2 : SRAM binary cell (6 transistors) 0 0 0 O =
Dynamic RAM Cell (DRAM) ' g 8 ‘I) (l) | Chipo
Word Line (WL) 0 0 1] -—J
B 13 o 8 ! 0 0 —
1 0 s g
|Cs 0 i 1 0 Chipl
0] 1 1 -J ‘
I ' 0 T N
Bit Line (BL) : 8 ? ! |Chip2
Fig. 3 : DRAM binary cell (one capacitor and one transistor) 1 0 I (]) 3])
. I l 0 .
esign a 16 by 4 RAM, " ;] (l) Chip 3
IR.T.U. 2014/ 1 I 1 :

m \ \

. Ans. Design 16 x 4 RAM € Mapping? Explain dir Py
16x4 RAM means, a RAM consists of 16 words of - Jor 2568 RaM X8 Cocr direcftqap

4 bit each. - ’

; [RTU, Dec. 2013)

, ——
;

- ey W W W W

I CAO.84)

MMHM.“uﬂﬂw..muwo%uhwsﬂ_‘owuw protocols distribute the
Ining cache coherence among all
of the cache controllers in a multiprocessor system. A
nm.nrn must recognize when a line that it holds is shared
with other caches. When an update action is performed
on a shared cache line, it must be announced to all other
caches by a broadcast mechanism. Each cache controller
is able to “snoop™ on the network to observed these
broadcasted notification and react accordingly. Snoopy
protocols are ideally suited to a bus-based multiprocessor,
because the shared bus provides-a simple means for
broadcasting and snooping. With a write-invalidate
protocol, there can be multiple readers but only one write
at a time. Initially, a line may be shared among several
caches for reading purposes.

When one of the caches wants to perform a write
to the line it first issues a notice that invalidates that tine in
the ether caches, making the line exclusive to the writing
cache. Once the line is exclusive, the owning processor
can make Jocal writes until some other processor requires
the same line. With a write update protocol, there can be
multiple writers as well as multiple readers. When a
processors wishes to update a shared line, the word to be
updated is distributed to all others, and caches containing
that line can update it.

e hat are the 3 different cache memory
schemes? Explain in detail with suitable
JR.TU. 20i5]

examples.

Ans. The 3 different cache memory schemes are -
1. Fully-Associative
2. Direct Mapped / 1-Way Set Associative
3. Set Associative
1. Fully Associative
Fig. | shows an example of a Fully Associative

cache.

Main Memory
Line m
H Cache Memory
. 4 T .
—1 ;
Line2 |- — Gy
Lne1 |.......,[~S=i.
Line 0 T
Fig. 1

~(B.Tech. (VI Sem.) C.S. Solved Papers)

This organizational scheme allows any line in main
memory to be stored at any location in the cache. Fully-
Associative cache does not use cache pages, but only
uses lines. Main memory and cache memory are both
divided into lines of equal size.

For example the fig. 1 shows that Line 1 of main
memory is stored in Line 0 of cache. However, this is not
the only possibility, Line 1 could have been stored anywhere
within the cache. Any cache line may store any memory
line, hence it is named, Fully Associative.

A Fully Associative scheme provides the best
performance because any memory location can be stored
atany cache location. The disadvantage is the complexity
of implementing this scheme. The complexity comes from
having to determine if the requested data is present in
cache. In order to meet the timing requirements, the current
address must be compared with all the addresses present
in the TRAM. This requires a very large number of
comparators that increase tlie complexity ‘and cost of
implementing large caches. Therefore, this type of cache
is usually only used for small caches, typically less than
4K.

2. Direct Mapped / 1-Way Set Associative

Direct Mapped cache is also referred to as 1-Way
set associative cache. Fig. 2 shows an example of a direct
map scheme. g '

In this scheme, main memory is divided into cache
pages. The size of each page is equal to the size of the
cache. Unlike the fully associative cache, the direct
mapped cache may only store a specific line of memory
within the same line of cache. For example, Line 0 of any
page in memory must be stoied in Line 0 of cache
memory. Therefore if Line 0 of Page 0 is stored within
the cache and Line 0 of Page | is requested, then Line 0
of Page 0 will be replaced with Line 0 of Page 1.

Main Memory Pages
1__Lnen .-
v%.m.a Cache Memory
_ Lne n : H Line n
Gren Line 0 y .
. I
’ Page 0 H_ ¥l [Ctineo
Tine @

Fig. 2 : A Direct Map Scheme
i _ This scheme directly maps a:memory line into an
-equivalent cache line, hence it is named Direct Mapped
cache. A Dire¢t Mapped cache scheme is the least

(Computer ‘Architecture and Organisation j—
complex of all three caching schemes. Direct Mapped
cache only requires that the current requested address be
compared with only one cache address. Since :.:m
implementation is less complex, it is far less expensive
than the other caching schemes. The disadvantage is that
Direct Mapped cache is far less flexible making .::w
performance much slower, especially when jumping
between cache pages.
3. Set Associative

A Set Associative cache scheme is a combination
of Fully Associative and Direct Mapped caching schemes.
A set associate scheme works by dividing the cache
SRAM into equal sections (2 or 4 sections typically) called

_cache ways. The cache page size is equal to the size of

the cache way. Each cache way is treated like a small
direct mapped cache.

To make the explanation clear, lets look at a specific
example. Fig. 3 shows a diagram of a 2-Way Set-
Associative cache scheme.

Main Memory Pages

.

| Pagem

T T

Line 0

Fig. 3 : 2-Way Set Assaciative Cache Scheme
In this scheme, two lines of memory may be stored
at any time. This helps to reduce the number of times the
cache line data is written-over.

Q.21 Discuss the general characteristics of memory
system. What is the use of virtual memory and
discuss its concept. [R.T.U. Dec. 2013/

Ans. General Characteristics of Computer Memory

Systems

Location
Internal (e.g. processor registers, main
memory, cache)
External (e.g. optical disks, magnetic
disks, tapes)

Capacity)
Number of words
Number of bytes

Unit of Transfer
Word
Block

{CAO.85

Access Method
Sequential
Direct
Random
Associative
Performance
Access time
Cycle time
Transfer rate
Physical Type
Semiconductor
Magnetic
Optical
Magneto-optical
Physical Characteristics
Volatile/ non volatile
Erasable / nonerasable
Organization
Memory modules
Virtual Memory and its Uses : Refer ro 0.9.
Address Mapping Using Pages : The table
implementation of tie address mapping is simplified if the
information in the address space and the memory space
are each divided into group of fixed size. The physical
memory is broken down into groups of equal size called
blocks, which may range form 64 to 4096 words each.
The term-page refers to groups of address space of the
same size. For example, if a page or block coasists if 1K
words, then using the previous example, address space is
divided into 1024 pages and main memory is divided into
32 blocks. Although both a page and a block are split into
groups of 1K words, a page refers to the organization of
address space, while a block refers to the organization of
memory space. The programs are also considered to be
split into page. Portions of programs are moved from
auxiliary memory to main memory in records equal to tie
size of a page. The term “page frame” is sometimes used
to denote a block.

Consider a computer with an address space of 8K
and a memory space of 4K. If we split each into groups
of 1K words we obtain eight pages and four blocks as
shown in fig.1. At any given time, up to four pages of
address space may reside in main memory in any one of
the four blocks.

The mapping from address space to memory space
is facilitated if each virtual address is considered to be
represented by two numbers : A page number address
and a line within the page. In a computer with 2° words
per page, p bits are used to specify a line address and the

CAO.86 —

remaining high-order bits of the virtual address specify
the page number. In the example, of fig.1 a virtual address
has 13 bits. Since each page consists of 2'° = 1024 words,
the high-order three bits of 2 virtual address will specify
one of the eight pages and the low-order 10 bits give the
\ine address within the page. Note that the line address in
address space and memory space 15 the same; the only
mapping required is from number 1o a block number.

The organization of the memory mapping tableina
pageéd system is shown in fig.2. The memory-page table
consists of eight words, one for each page. The address
in the page table denotes the page number and the content
of the word gives the block number where that page is
stored in main memory. The table shown that pages 1.2,5,

and 6 are now available in main memcry in blocks 3.0,1
and 2, respectively. A presence bitin each location indicates
whether the page has been transferred form auxiliary
memory into main memory. A0 inthe presence bit indicates
that this page is not available in main memory. The CPU
references a word in memory with a virtual addressof 13
bits. The three high-order bits of the virtual address specify
4 page number and also an address for the memory-page
table. The content of the world page table at the page
number address is read out into the memory table buffer
register. If the presence bitis 2 1, the block number thus
read is transferred to the high-order bits of the main
memory address register. The line number from the virtual
address is transferred into the 10 low-order bits of the
memory address register. A read signal to main memory
transfers the content of the word to the main memory
buffer register ready to be used by the CPU. If the
presence bit in the word read from the page table is 0, it
signifies that the content of the word referenced by the
virtual address does not reside in main memory. Acallto
the operating system is then generated to fetch the required
s page down form auxiliary memory .-.a place it into main.
memory before resuming computation.

{B.Tech. (VI Sem.) C.S. Solved Papers)

Moy page able

Fig. 2 : Memory table in @ paged system

Address Space and Memory Space : An address used
by a programmer will be called a virtual address and the
set of address space of such addresses is called the address
space. An address in main memory IS called a memory
space location or physical address. The set of such
Jocations is called the memory space. Thus the address
space is the set of addresses generated by programs as
they reference instructions and data; the memory space
consists of the actual main memory locations directly
addressable for processing. In most computers the address
and memory spaces are identical. The address space is
allowed to be larger than the memory space in computers
with virtual memory.

Auxiliary memory

Memory space
M=32k =2V

Address space
N=1024K =220

Flg. 3: Relation berween address and memory space in @ virtual

__H_anﬂ uln-unm : thau lvmmu.. Asani i ider a computer with a main-
Figd: into groups of 1K words memory capacity of 32K words (K = 1024). Fifteen bits

Y)

(Comp e and atlon p—
are needed to specify a physical address in memory since
32K = 2. Suppose that the computer has available
auxiliary memory for storing 2% = 024K words. Thus
auxiliary memory has a capacity for storing information
equivalent to the capacity of 32 main memories Denoting
the address space by N and the memory space by M. we
then have for this example N = 1024K and M = 32K

In a multiprogram computer system. programs and
data are transferred to and from auxiliary memory and
main memory based on demands imposed by the CPU
Suppose that program 1 is currently being exccuted in the
CPU. Program 1 and a portion of its associated data are
moved from auxiliary memory into main memory as shown

in Fig. Portions of programs and data need not be in -

contiguous locations in memory since information is being
move and out and emply spaces may be able in
scattercd locations in memory.

In a virtual memory system, programmers are told
that they have the total address space at their disposal
Moreover, the address field of the instruction code has a
sufficient number of bits to specify all virtual addresses.
In example, the address field of an instruction code will
consist of 20 bits but physical memory addresses must be
specified with only 15 bits. Thus CPU will reference
instructions and data with a 20-bit address, but the
information at this address must be taken from physical
memory because access (o zuxiliary storage for individual
words will be prohibitively long, (For efficient transfers,
auxiliary storage moves an entire record to the main
memory.) A table is then needed, to map a virtual address
of 20 bits to a physical address of 15 bits. The mapping is
a dynamic operation, which means that every address is
(ranslated immediately as a word is referenced by CPU

The mapping table may be stored in a scparate
memory as shown in fig in main memory. In the first
case, an additional memory unit is required as well as one
exilra memory access ime. In the second case, the table
takes space from main memory and two accesses to
memory are required with the program running at half
speed.

@.ﬂ__&s the concept of time-shared common bus.

Fig.1. Only one processor can communicate with the
memory or another processor at any given time.

Memory uni

. 1: Time-shared common bus organization.

Transfer operations are conducted by the processor
that is in.control of the bus at the time. Any other processor
wishing to initiate a transfer must first determine the
availability status of the bus, and only after the bus
becomes available can the processor address the
destination unit to initiate the transfer. Acommand is issued
10 inform the destination unit what operation is to be
performed. The receiving unit recognizes its address in
the bus and responds to the control signals from the sender,
after which the transfer is initiated. The system may exhibit
\ransfer conflicts since one common bus is shared by all
processors. These conflicts must be resolved by
incorporating a bus controller that establishes priorities
among the requesting units.

A single common-bus system is restricted to one
\ransfer at a time. This means that when one processor is
communicating with the memory, all other processors are
cither busy with internal operations or must be idle waiting
for the bus. As a consequence, the total overall transfer
rate within the system is limited by the speed of the single
path. The processors in the system can be kept busy more
often through the implementation of two or more
independent buses to permit multiple simultaneous bus
transfers. However, this increases the system cost and
complexity.

A more economical implementation of a dual bus
structure is depicted in Fig.2. Here we have a number of
Jocal buses each connected to its own local memory and
to one or more processors. Each local bus may be
connected to a CPU, an IOP, or any combination of
processors. A system bus controller links each local bus
to a common system bus. The /O devices connected to
o ol e Tl s S

. emory connected to the

Ans. Time-Shared Common Bus: A common-bus
multiprocessor system consists of anumber of processors
connected through & common path to a memory unit. A
time-shared common bus for five processors Is shown/in

system bus 1s shared by all

10P is connected directly to the mu.uwn.: u.wun:wwm_huﬂnﬂ.-“
attached to it may be made available to all processors.
Only one processor can communicate with the mrw..nm
memory and other common resources through the system

(CAo.28)-

bus at any given time. The other processors are kept busy
communicating with their local memory and I/O devices.

Local bus

shared
memory|
System bus

Sysem
Local Sysiem e
E E B Bk bore o e
fonurolied vt meinory

Local bus Local bus

Fig. 2 : System Bus Structure for Multiprocessor.
Part of the local memory may be designed as a
cache memory attached to the CPU. In this way, the
average access time of the local memory can be made to
apprdach the cycle time of the CPU to which it isattached

Q.23 Write note on the following:
(a) Crossbar switch
(b) Hypercube Interconnection

Ans.(a) Crossbar switch: The crossbar switch
organization consists of a number of crosspoints that are
be placed at intersections between processor buses and
memory module paths. Fig.l shows a crossbar switch
interconnection between four CPUs and four memory
modules. The small square in each crosspoint is a switch
that determines the path from a processor [0 a memary
module. Each switch point has control logic toset up the
transfer path between a processor and memory. [t

examines the address that is placed in the bus to determine A
whether its particular module is being addressed. It also o
resolves multiple requests for access to the same meniory c
moduleon a predetermined priority basis n

Fig.2 shows the functional design of a crossbar P
switch connected to one memory module. The circuit c

consists of multiplexers that select the data, address, and el
control from one CPU for communication with the memory ai

module. ha

Priority levels are established by the arbitration logic T
1o select.one CPU when two or mgre CPUs attempt to ar
access the same memory. The multiplexer are controlled to

with the binary code that is generated by a priority encoder th
within the arbitration logic.

A crossbar switch organization supports o
simultaneous transfers from memory modules because w
there is a separate path associated wifh cach module. et

